Сварочный инвертор своими руками. Таймер реле времени для точечной сварки Таймер для контактной сварки на ардуино nano

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Привет, мозгочины ! Представляю вашему вниманию аппарат для точечной сварки на базе микроконтроллера Arduino Nano.


Данный аппарат можно использовать для приваривания пластин или проводников, например, к контактам аккумулятора 18650. Для проекта нам понадобится источник питания напряжением 7-12 В (рекомендуется 12 В), а также автомобильный аккумулятор напряжением 12 В в качестве источника электропитания самого сварочного аппарата. Обычно стандартный аккумулятор имеет емкость 45 А/ч, что вполне достаточно для приваривания никелевых пластин толщиной 0,15 мм. Для приваривания более толстых никелевых пластин вам понадобится аккумулятор большей емкости или два соединенных параллельно.

Сварочный аппарат генерирует двойной импульс, где значение первого составляет 1/8 часть от второго по длительности.
Длительность второго импульса регулируется с помощью потенциометра и отображается на экране в миллисекундах, поэтому очень удобно регулировать продолжительность данного импульса. Диапазон его регулировки от 1 до 20 мс.

Посмотрите видео, где подробно показан процесс создания устройства.

Шаг 1: Изготовление печатной платы

Для изготовления печатной платы можно использовать Eagle файлы, которые доступны по следующей .

Самый простой способ – это заказать платы у производителей печатных плат. Например, на сайте pcbway.com. Здесь можно приобрести 10 плат по цене примерно 20 €.

Но если вы привыкли делать все самостоятельно, тогда для изготовления прототипа платы используйте прилагаемые схемы и файлы.

Шаг 2: Установка компонентов на платы и припаивание проводников

Процесс установки и припаивания компонентов достаточно стандартен и прост. Устанавливайте сначала небольшие компоненты, а затем более крупные.
Наконечники сварочного электрода сделаны из твердой медной проволоки сечением 10 квадратных миллиметров. Для кабелей используйте гибкие медные провода сечением 16 квадратных миллиметров.

Шаг 3: Ножной выключатель

Для управления сварочным аппаратом вам потребуется ножной выключатель, поскольку обе руки используются для удержания наконечников сварочного электрода на месте.

Для этой цели я взял деревянную коробку, в которую установил вышеуказанный выключатель.

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток - 32 ампера, 220 вольт. Ток сварки - около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.

Рис.1 Принципиальная схема блока питания

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.


Рис.2 Принципиальная схема сварочного инвертора

На рисунке 2 - схема сварочника. Частота - 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц - два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 - 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0.3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:
первая - они глушат резонансные выбросы трансформатора
вторая - они значительно уменьшают потери IGBT при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT, то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа.

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть - убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше - ширина больше, ток меньше - ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT .

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Евгений Родиков (evgen100777 [собака] rambler.ru). По всем возникшим вопросам при сборке сварочника пишите на E-Mail.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Блок питания
Линейный регулятор

LM78L15

2 В блокнот
AC/DC преобразователь

TOP224Y

1 В блокнот
ИС источника опорного напряжения

TL431

1 В блокнот
Выпрямительный диод

BYV26C

1 В блокнот
Выпрямительный диод

HER307

2 В блокнот
Выпрямительный диод

1N4148

1 В блокнот
Диод Шоттки

MBR20100CT

1 В блокнот
Защитный диод

P6KE200A

1 В блокнот
Диодный мост

KBPC3510

1 В блокнот
Оптопара

PC817

1 В блокнот
C1, C2 10мкФ 450В 2 В блокнот
Электролитический конденсатор 100мкФ 100В 2 В блокнот
Электролитический конденсатор 470мкФ 400В 6 В блокнот
Электролитический конденсатор 50мкФ 25В 1 В блокнот
C4, C6, C8 Конденсатор 0.1мкФ 3 В блокнот
C5 Конденсатор 1нФ 1000В 1 В блокнот
С7 Электролитический конденсатор 1000мкФ 25В 1 В блокнот
Конденсатор 510 пФ 2 В блокнот
C13, C14 Электролитический конденсатор 10 мкФ 2 В блокнот
VDS1 Диодный мост 600В 2А 1 В блокнот
NTC1 Терморезистор 10 Ом 1 В блокнот
R1 Резистор

47 кОм

1 В блокнот
R2 Резистор

510 Ом

1 В блокнот
R3 Резистор

200 Ом

1 В блокнот
R4 Резистор

10 кОм

1 В блокнот
Резистор

6.2 Ом

1 В блокнот
Резистор

30Ом 5Вт

2 В блокнот
Сварочный инвертор
ШИМ контроллер

UC3845

1 В блокнот
VT1 MOSFET-транзистор

IRF120

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
VD2, VD3 Диод Шоттки

1N5819

2 В блокнот
VD4 Стабилитрон

1N4739A

1 В блокнот
VD5-VD7 Выпрямительный диод

1N4007

3 Для понижения напряжения В блокнот
VD8 Диодный мост

KBPC3510

2 В блокнот
C1 Конденсатор 22 нФ 1 В блокнот
C2, C4, C8 Конденсатор 0.1 мкФ 3 В блокнот
C3 Конденсатор 4.7 нФ 1 В блокнот
C5 Конденсатор 2.2 нФ 1 В блокнот
C6 Электролитический конденсатор 22 мкФ 1 В блокнот
C7 Электролитический конденсатор 200 мкФ 1 В блокнот
C9-C12 Электролитический конденсатор 3000мкФ 400В 4 В блокнот
R1, R2 Резистор

33 кОм

2 В блокнот
R4 Резистор

510 Ом

1 В блокнот
R5 Резистор

1.3 кОм

1 В блокнот
R7 Резистор

150 Ом

1 В блокнот
R8 Резистор

1Ом 1Ватт

1 В блокнот
R9 Резистор

2 МОм

1 В блокнот
R10 Резистор

1.5 кОм

1 В блокнот
R11 Резистор

25Ом 40Ватт

1 В блокнот
R3 Подстроечный резистор 2.2 кОм 1 В блокнот
Подстроечный резистор 10 кОм 1 В блокнот
K1 Реле 12В 40А 1 В блокнот
K2 Реле РЭС-49 1 В блокнот
Q6-Q11 IGBT-транзистор

IRG4PC50W

6

В некоторых случаях вместо пайки выгоднее использовать точечную сварку. К примеру, такой способ может пригодится для ремонта аккумуляторных батарей, состоящих из нескольких аккумуляторов. Пайка вызывает чрезмерный нагрев ячеек, что может привести к выходу их из строя. А вот точечная сварка нагревает элементы не так сильно, поскольку действует относительно непродолжительное время.

Для оптимизации всего процесса в системе используется Arduino Nano. Это управляющий блок, который позволяет эффективно управлять энергоснабжением установки. Таким образом, каждая сварка является оптимальной для конкретного случая, и энергии потребляется столько, сколько необходимо, не больше, и не меньше. Контактными элементами здесь является медный провод, а энергия поступает от обычного автомобильного аккумулятора, или двух, если требуется ток большей силы.

Текущий проект является почти идеальным с точки зрения сложности создания/эффективности работы. Автор проекта показал основные этапы создания системы, выложив все данные на Instructables .

По словам автора, стандартной батареи хватает для точечной сварки двух никелевых полос толщиной в 0.15 мм. Для более толстых полос металла потребуется две батареи, собранных в схему параллельно. Время импульса сварочного аппарата настраивается, и составляет от 1 до 20 мс. Этого вполне достаточно для сварки никелевых полос, описанных выше.


Плату автор рекомендует делать на заказ у производителя. Стоимость заказа 10 подобных плат - около 20 евро.

В ходе сварки обе руки будут заняты. Как управлять всей системой? Конечно же, при помощи ножного переключателя. Он очень простой.

А вот результат работы:

В жизни каждого «радиогубителя» возникает момент, когда нужно сварить между собой несколько литиевых аккумуляторов - либо при ремонте сдохшей от возраста АКБ ноутбука, либо при сборке питания для очередной поделки. Паять «литий» 60-ваттным паяльником неудобно и страшновато - чуть перегреешь - и у тебя в руках дымовая граната, которую бесполезно тушить водой.

Коллективный опыт предлагает два варианта - либо отправиться на помойку в поисках старой микроволновки, раскурочить её и достать трансформатор, либо изрядно потратиться .

Мне совершенно не хотелось ради нескольких сварок в год искать трансформатор, пилить его и перематывать. Хотелось найти ультрадешёвый и ультрапростой способ сваривать аккумуляторы электрическим током.

Мощный низковольтный источник постоянного тока, доступный каждому - это обычная б.у. АКБ от машины. Готов поспорить, что он у вас уже есть где-то в кладовке или найдётся у соседа.

Подсказываю - лучший способ обзавестись старой АКБ задаром - это

дождаться морозов. Подойдите к бедолаге, у которого не заводится машина - он скоро побежит за новым свежим аккумулятором в магазин, а старый отдаст вам просто так. На морозе старая свинцовая АКБ может и плохо работает, но после заряда дома в тепле выйдет на полную ёмкость.

Чтобы сваривать аккумуляторы током от батареи, нам нужно будет выдавать ток короткими импульсами в считанные миллисекунды - иначе получим не сварку, а выжигание дыр в металле. Самый дешёвый и доступный способ коммутировать ток 12-вольтовой батареи - электромеханическое реле (соленоидное).

Проблема в том, что обычные автомобильные реле на 12 вольт рассчитаны максимум на 100 ампер, а токи короткого замыкания при сварке в разы больше. Есть риск, что якорь реле просто приварится. И тогда на просторах Алиэкспресс я наткнулся на мотоциклетные реле стартера. Подумалось, что если эти реле выдерживают ток стартера, причём много тысяч раз, то и для моих целей сгодится. Окончательно убедило вот это видео, где автор испытывает аналогичное реле:

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»