Назначение нейтрального провода в трехфазной цепи. Вопрос6.Для чего используется нейтральный провод

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Рассмотрим схему на рис. 5.12. При Z A ≠ Z B ≠Z C система токов нессиметричная (I А ≠ I B ≠ I C ), поэтому, в соответствии с рис. 5.5, в нейтральном проводе суще­ствует ток I N = Ia + 1в + I с. Этот ток создает падение; напряжения I N Z N в нейтральном проводе.

За счет падения напряжения на нейтральном провода
потенциалы точек Nun разные, поэтому фазное напря­жение приемника U"c не равно фазному напряжению
источника U c . Чтобы эти напряжения были равны, должно
быть близким к нулю сопротивление нейтрального про­
вода.

При уменьшении Zc до нуля (короткое замыкание фазы приемника) фазное напряжение U′c = IcZc умень­шится до нуля. Изменение сопротивления фазы прием­ника влечет за собой изменение его фазного напряжения.

При коротком замыкании фазы С приемника потен­циал нейтральной точки п становится равным потен­циалу точки С , а значит, напряжения U A и U"b возрастут до линейных напряжений Uca и Ubc что недопустимо. Для защиты приемника от такого режима в каждой фазе устанавливают, например, предохранители. При коротком замыкании перегорает плавкая вставка пред­охранителя, что не допускает переноса потенциала точки С в точку п.

При наличии нейтрального провода короткое замыка­ние фазы С приемника является одновременно корот­ким замыканием для источника Е С , поэтому предохрани­тель срабатывает надежно. При отсутствии нейтрального провода предохранитель не сработает, так как режим

Z С = 0 не является коротким замыканием для источни­ка Е С.

Таким образом, если сопротивление нейтрального про­вода, называемого на практике нулевым проводом, значительное, то:

1) система фазных напряжений прием­ника несимметричная;

2) изменение нагрузки (сопро­тивления) одной фазы приводит к изменению напряже­ния на всех фазах приемника; 3) при повреждении изоля­ций одной фазы приемника (коротком замыкании) могут выйти из строя приемники двух других фаз за счет перенапряжений на них; 4) работа предохранителей (или других защитных аппаратов) становится ненадеж­ней. Учитывая это, нулевой провод стремятся выполнить с малым сопротивлением.

А как быть при неожиданных обрывах нулевого прово­да? Эксплуатировать цепь при этом нельзя из-за опас­ности выхода из строя приемников при коротком замы­кании одной из фаз.

Более надежным является многократное повторное заземление нулевого провода: в нейтральной точке гене­ратора, в местах разветвлений линий, у общественных и производственных зданий, в конце трехфазной ли­нии и т. д. При обрыве нулевого провода ток проходит через заземления.

Заметим, что с целью уменьшения несимметричности фазного напряжения приемников на практике стремятся однофазные приемники распределить равномерно по фа­зам, чтобы уменьшить ток нулевого провода, который - при равномерной нагрузке равен нулю.

Для расчета трехфазной цепи применимы все методы, используемые для расчета линейных цепей. Обычно сопротивления проводов и внутреннее сопротивление генератора меньше сопротивлений приемников, поэтому для упрощения расчетов таких цепей (если не требуется большая точность) сопротивления проводов можно не учитывать (Z Л = 0, Z N = 0). Тогда фазные напряжения приемника U a , U b и U c будут равны соответственно фазным напряжениям источника электрической энергии(генератора или вторичной обмотки трансформатора), т.е. U a = U A ; U b = U B ; U c = U C . Если полные комплексные сопротивления фаз приемника равны Z a = Z b = Z c , то токи в каждой фазе можно определить по формулам

İ a = Ú a / Z a ; İ b = Ú b / Z b ; İ c = Ú c / Z c .

В соответствии с первым законом Кирхгофа ток в нейтральном проводе

İ N = İ a + İ b + İ c = İ A + İ B + İ C .

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное - которое определяют еще как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

При соединении источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам.

Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так как

Ė A + Ė B + Ė C = 0.

Если соединение обмоток треугольником выполнено неправильно, т.е. в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отличается от нуля и по обмоткам протекает большой ток. Это аварийный режим для источников питания, и поэтому недопустим.

Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.

Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: U ab = U AB , U bc = U BC , U ca = U CA . По фазам Z ab , Z bc , Z ca приемника протекают фазные токи İ ab , İ bc и İ ca . Условное положительное направление фазных напряжений Ú ab , Ú bc и Ú ca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İ A , İ B и İ C принято от источников питания к приемнику.

В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам

İ ab = Ú ab / Z ab ; İ bc = Ú bc / Z bc ; İ ca = Ú ca / Z ca .

Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c (рис 3.12)

Сложив левые и правые части системы уравнений, (3.20), получим

İ A + İ B + İ C = 0,

т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X , Y и Z соединяют в одну общую точку N , называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Z a , Z b , Z c ) также соединяют в одну точку n . Такое соединение называется соединение звезда.


Провода A a , B b и C c , соединяющие начала фаз генератора и приемника, называются линейными, провод N n , соединяющий точкуN генератора с точкой n приемника, – нейтральным.

Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.

В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение U Ф – напряжение между началом и концом фазы или между линейным проводом и нейтралью (U A , U B , U C у источника; U a , U b , U c у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (U A =U a , U B =U b , U C =U c ). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.

Линейное напряжение (U Л) – напряжение между линейными проводами или между одноименными выводами разных фаз (U AB , U BC , U CA ). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).

По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:

· Фазные (I Ф) – это токи в фазах генератора и приемников.

· Линейные (I Л) – токи в линейных проводах.

50. Понятие о несимметричных режимах работы в трехпроводной и четырехпроводной цепях. Назначение нулевого провода.

Трехпроводная цепь

В общем случае при несимметричной нагрузке Z ab ≠ Z bc ≠ Z ca . Обычно она возникает при питании от трехфазной сети однофазных приемников. Например, для нагрузки, рис. 3.15, фазные токи, углы сдвига фаз и фазные мощности будут в общем случае различными.

Векторная диаграмма для случая, когда в фазе ab имеется активная нагрузка, в фазе bc – активно-индуктивная, а в фазе ca – активно-емкостная приведена на рис. 3.16, топографическая диаграмма – на рис. 3.17.

Построение векторов линейных токов произведено в соответствии с выражениями

İ A = İ ab - İ ca ; İ B = İ bc - İ ab ; İ C = İ ca - İ bc .

Таким образом, при несимметричной нагрузке симметрия фазных токов İ ab , İ bс, İ ca нарушается, поэтому линейные токи İ A , İ B , İ C можно определить только расчетом по вышеприведенным уравнениям (3.20) или найти графическим путем из векторных диаграмм (рис. 3.16, 3.17).

Важной особенностью соединения фаз приемника треугольником является то, что при изменении сопротивления одной из фаз режим работы других фаз остается неизменным, так как линейные напряжения генератора являются постоянными. Будет изменяться только ток данной фазы и линейные токи в проводах линии, соединенных с этой фазой. Поэтому схема соединения треугольником широко используется для включения несимметричной нагрузки.

При расчете для несимметричной нагрузки сначала определяют значения фазных токов İ ab , İ bc , İ ca и соответствующие им сдвиги фаз φ ab , φ bc , φ ca . Затем определяют линейные токи с помощью уравнений (3.20) в комплексной форме или с помощью векторных диаграмм

Четырехпроводная цепь

При симметричной системе напряжений и несимметричной нагрузке, когда Z a ≠ Z b ≠ Z c и φ a ≠ φ b ≠ φ c токи в фазах потребителя различны и определяются по закону Ома

İ a = Ú a / Z a ; İ b = Ú b / Z b ; İ c = Ú c / Z c .

Ток в нейтральном проводе İ N равен геометрической сумме фазных токов

İ N = İ a + İ b + İ c .

Напряжения будут U a = U A ; U b = U B ; U c = U C , U Ф = U Л / , благодаря нейтральному проводу при Z N = 0.

Следовательно, нейтральный провод обеспечивает симметрию фазных напряжений приемника при несимметричной нагрузке.

Поэтому в четырехпроводную сеть включают однофазные несимметричные нагрузки, например, электрические лампы накаливания. Режим работы каждой фазы нагрузки, находящейся под неизменным фазным напряжением генератора, не будет зависеть от режима работы других фаз

Его называют нулевым потому, что в некоторых случаях ток в нем равен нулю, и нейтральным исходя из того, что он одинаково принадлежит любой из фаз.

Назначение нулевого провода в том, что он необходим для выравнивания фазных напряжений нагрузки,когда сопротивления этих фаз различны, а также для заземления электрооборудования в сетях с глухозаземленной нейтралью.

Благодаря назначению нулевого провода напряжение на каждой фазе нагрузки будет практически одинаковым при неравномерной нагрузке фаз. Осветительная нагрузка, включенная звездой, всегда требует наличия нулевого провода, так как равномерная нагрузка фаз не гарантируется.в э

Сечение нулевого провода трехфазных линий, в которых нулевые провода не используют для заземления (специальные или реконструируемые сети освещения), принимают близким к половине сечения фазных проводов.

Если, например, фазные провода имеют сечение 35 мм2, нулевой провод берется 16 мм2.

Сечение нулевого провода трехфазной системы с глухозаземленной найтралью, в которой нулевой провод используется для заземления, должно быть не менее половины сечения фазных проводов, а в некоторых случаях равно им.

Нулевой провод воздушных линий 320/220 В должен иметь одинаковую марку и сечение с фазными проводами:

на участках, выполненных стальными проводами, а также биметаллическими и сталеалюминиевыми фазными проводами, сечением 10 мм2;

при невозможности обеспечения другими средствами необходимой селективности защиты от коротких замыканий на землю (при этом допускается принимать сечение нулевых проводов большее, чем фазных проводов).

Поскольку в одно- и двухфазных линиях по нулевому и фазному проводам протекает ток одинаковой величины, то для этих линий сечение нулевых и фазных проводов берут одинаковым

51.Причины возникновения переходных процессов в электрических цепях. Дифференциальные уравнения электрического состояния цепей и методы их решения.

Переходные процессы возникают при любых изменениях режима электрической цепи: при подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (короткое замыкание, обрыв провода и т.д.). Изменения в электрической цепи можно представить в виде тех или иных переключений, называемых в общем случае коммутацией. Физически переходные процессы представляют собой процессы перехода от энергетического состояния, соответствующего до коммутационному режиму, к энергетическому состоянию, соответствующему после коммутационному режиму.

Переходные процессы обычно быстро протекающие: длительность их составляет десятые, сотые, а иногда и миллиардные доли секунды. Сравнительно редко длительность переходных процессов достигает секунд и десятков секунд. Тем не менее изучение переходных процессов весьма важно, так как позволяет установить, как деформируется по форме и амплитуде сигнал, выявить превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, увеличения амплитуд токов, которые могут в десятки раз превышать амплитуду тока установившегося периодического процесса, а также определять продолжительность переходного процесса. С другой стороны, работа многих электротехнических устройств, особенно устройств промышленной электроники, основана на переходных процессах. Например, в электрических нагревательных печах качество выпускаемого материала зависит от характера протекания переходного процесса. Чрезмерно быстрое нагревание может стать причиной брака, а чрезмерно медленное отрицательно оказывается на качестве материала и приводит к снижению производительности.

В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, подключенными к цепи. При этом часть энергия безвозвратно преобразуется в другие виды энергий (например, в тепловую на активном сопротивлении).

После окончания переходного процесса устанавливается новый установившийся режим, который определяется только внешними источниками энергии. При отключении внешних источников энергии переходный процесс может возникать за счет энергии электромагнитного поля, накопленной до начала переходного режима в индуктивных и емкостных элементах цепи.

52. Законы коммутации и их использование при определении начальных условий.

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде i L (0 -) = i L (0 +), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: U C (0 -) = U C (0 +).

Следовательно, наличие ветви, содержащей индуктивность, в цепи, включаемой под напряжение, равносильно разрыву цепи в этом месте в момент коммутации, так как i L (0 -) = i L (0 +). Наличие в цепи, включаемой под напряжение, ветви, содержащей разряженный конденсатор, равносильно короткому замыканию в этом месте в момент коммутации, так как U C (0 -) = U C (0 +).

Однако в электрической цепи возможны скачки напряжений на индуктивностях и токов на емкостях.

В электрических цепях с резистивными элементами энергия электромагнитного поля не запасается, вследствие чего в них переходные процессы не возникают, т.е. в таких цепях стационарные режимы устанавливаются мгновенно, скачком.

В действительности любой элемент цепи обладает каким-то сопротивлением r, индуктивностью L и емкостью С, т.е. в реальных электротехнических устройствах существуют тепловые потери, обусловленные прохождением тока и наличием сопротивления r, а также магнитные и электрические поля.

Переходные процессы в реальных электротехнических устройствах можно ускорять или замедлять путем подбора соответствующих параметров элементов цепей, а также за счет применения специальных устройств.

53. Описание процесса заряда и разряда конденсатора, включенного последовательно с резистором. Простейший генератор пилообразного напряжения.

Нейтраль в ЛЭП

В линиях электропередач разных классов применяются различные виды нейтралей. Это связано с целевым назначением и различной аппаратурой защиты линии от короткого замыкания и утечек. Нейтраль бывает глухозаземлённая, изолированная и эффективно-заземленная.

Глухозаземлённая нейтраль

Применяется в линиях напряжением от 0,4 кВ и до 35 кВ, при небольшой длине ЛЭП и большом количестве точек подключения потребителей. Потребителю приходят только фазы, подключение однофазной нагрузки осуществляется между фазой и нулевым проводом (нейтралью). Нулевой провод генератора также заземлён.

Изолированная нейтраль

Применяется в линиях с напряжением свыше 2 кВ до 35 кВ, такие линии имеют среднюю протяжённость и сравнительно небольшое число точек подключения потребителей, которыми обычно являются ТП в жилых районах и мощные машины фабрик и заводов.
В линиях на 50 кВ может применяться как изолированная, так и эффективно-заземлённая нейтраль.

Эффективно заземленная нейтраль

Применяется на протяжённых линиях с напряжением от 110 кВ до 220 кВ (п. 1.2.16 ПУЭ)

См. также

Напишите отзыв о статье "Нейтральный провод"

Примечания

Источники

  • «Теоретические основы электротехники. Электрические цепи» Бессонов Л. А. Москва. «Высшая школа». 1996 ISBN 5-8297-0159-6

Отрывок, характеризующий Нейтральный провод

Канонада на левом фланге начнется, как только будет услышана канонада правого крыла. Стрелки дивизии Морана и дивизии вице короля откроют сильный огонь, увидя начало атаки правого крыла.
Вице король овладеет деревней [Бородиным] и перейдет по своим трем мостам, следуя на одной высоте с дивизиями Морана и Жерара, которые, под его предводительством, направятся к редуту и войдут в линию с прочими войсками армии.
Все это должно быть исполнено в порядке (le tout se fera avec ordre et methode), сохраняя по возможности войска в резерве.
В императорском лагере, близ Можайска, 6 го сентября, 1812 года».
Диспозиция эта, весьма неясно и спутанно написанная, – ежели позволить себе без религиозного ужаса к гениальности Наполеона относиться к распоряжениям его, – заключала в себе четыре пункта – четыре распоряжения. Ни одно из этих распоряжений не могло быть и не было исполнено.
В диспозиции сказано, первое: чтобы устроенные на выбранном Наполеоном месте батареи с имеющими выравняться с ними орудиями Пернетти и Фуше, всего сто два орудия, открыли огонь и засыпали русские флеши и редут снарядами. Это не могло быть сделано, так как с назначенных Наполеоном мест снаряды не долетали до русских работ, и эти сто два орудия стреляли по пустому до тех пор, пока ближайший начальник, противно приказанию Наполеона, не выдвинул их вперед.
Второе распоряжение состояло в том, чтобы Понятовский, направясь на деревню в лес, обошел левое крыло русских. Это не могло быть и не было сделано потому, что Понятовский, направясь на деревню в лес, встретил там загораживающего ему дорогу Тучкова и не мог обойти и не обошел русской позиции.
Третье распоряжение: Генерал Компан двинется в лес, чтоб овладеть первым укреплением. Дивизия Компана не овладела первым укреплением, а была отбита, потому что, выходя из леса, она должна была строиться под картечным огнем, чего не знал Наполеон.
Четвертое: Вице король овладеет деревнею (Бородиным) и перейдет по своим трем мостам, следуя на одной высоте с дивизиями Марана и Фриана (о которых не сказано: куда и когда они будут двигаться), которые под его предводительством направятся к редуту и войдут в линию с прочими войсками.
Сколько можно понять – если не из бестолкового периода этого, то из тех попыток, которые деланы были вице королем исполнить данные ему приказания, – он должен был двинуться через Бородино слева на редут, дивизии же Морана и Фриана должны были двинуться одновременно с фронта.
Все это, так же как и другие пункты диспозиции, не было и не могло быть исполнено. Пройдя Бородино, вице король был отбит на Колоче и не мог пройти дальше; дивизии же Морана и Фриана не взяли редута, а были отбиты, и редут уже в конце сражения был захвачен кавалерией (вероятно, непредвиденное дело для Наполеона и неслыханное). Итак, ни одно из распоряжений диспозиции не было и не могло быть исполнено. Но в диспозиции сказано, что по вступлении таким образом в бой будут даны приказания, соответственные действиям неприятеля, и потому могло бы казаться, что во время сражения будут сделаны Наполеоном все нужные распоряжения; но этого не было и не могло быть потому, что во все время сражения Наполеон находился так далеко от него, что (как это и оказалось впоследствии) ход сражения ему не мог быть известен и ни одно распоряжение его во время сражения не могло быть исполнено.
  • Вопрос 4. Изменением каких параметров электрической цепи (см. Рис.1) можно получить резонанс напряжений?
  • Вопрос 5. С помощью каких приборов и по какому признаку можно судить о возникновении резонанса напряжений в электрической цепи?
  • Вопрос 6:Провести анализ построенных векторных диаграмм до и после резонанса напряжений и объяснить, в каком случае входное напряжение опережает ток, а в каком – отстает от тока.
  • Вопрос7. По схеме замещения исследуемой цепи проанализируйте, к чему приведет изменение активного сопротивления электрической цепи при резонансе напряжений.
  • Вопрос8. Сохраняется ли резонанс напряжений, если изменить только напряжение питающей сети?
  • Вопрос9. Объяснить ход кривых полученных в этой работе.
  • Вопрос10. Какую опасность для электрических устройств представляет резонанс напряжений? Где используется резонанс напряжений?
  • Вопрос2.Как соединяются электроприемники «звездой»?
  • Вопрос3.Какими уравнениями выражаются мгновенные значения фазных напряжений и токов при симметричной нагрузке?
  • Вопрос4.В каком соотношении находятся линейные и фазные напряжения при симметричной нагрузке?
  • Вопрос5. Какой режим работы трехфазной цепи называют несимметричным?
  • Вопрос6.Для чего используется нейтральный провод?
  • Вопрос7.Какими уравнениями описывается электрическое состояние цепи при несимметричной нагрузке?
  • Вопрос8.Как построить совмещенные векторные диаграммы напряжений и токов для исследованных режимов трехфазной цепи?
  • Вопрос 9.К чему приведет обрыв нейтрального провода при несимметричной нагрузке?
  • Вопрос 10.Как изменяется напряжение при обрыве одной фазы в четырехпроводной и трехпроводной сетях?
  • Вопрос 11. А) Как изменяется напряжение при коротком замыкании фазы в трехпроводной сети?
  • Вопрос 12. К чему приводит обрыв линейного провода в трехфазной установке а) четырехпроводной и б) трехпроводной систем?
  • Контрольные вопросы
  • Вопрос 1: Где и с какой целью применяют катушки со стальным сердечником?
  • Вопрос 2. С какой целью магнитопроводы электротехнических устройств изготавливают из ферромагнитных материалов?
  • Вопрос 3. Объяснить характер изменения индуктивного и полного сопротивления катушки с сердечником от протекающего через неeтока.
  • Вопрос 4 .Как уменьшить потери энергии на гистерезис и вихревые токи?
  • Вопрос 5 .Нарисовать и объяснить схему замещения катушки с сердечником.
  • Вопрос 6. Как определяются параметры схемы замещения и зависят ли они от подводимого напряжения?
  • Вопрос 7. Объяснить характер зависимостей;;;.
  • Вопрос 1. Устройство и принцип действия трансформатора.
  • Вопрос 2. Записать и объяснить формулы эдс и уравнения электрического и магнитного состояний трансформатора
  • Вопрос 3. Что такое «коэффициент трансформации»?
  • Вопрос 4. Нарисовать и объяснить схему замещения нагруженного трансформатора.
  • Вопрос 5:Как проводятся опыты холостого хода и короткого замыкания?
  • Вопрос 6:Объяснить причины и характер изменения напряжения вторичной обмотки при изменении нагрузки.
  • Вопрос 7: Как определяется кпд силовых трансформаторов?
  • Контрольные вопросы
  • Вопрос 1. Объясните устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Ответ 1 Двигатель состоит из неподвижного статора и вращающегося ротора.
  • Вопрос 2. Какими достоинствами и недостатками обладает трехфазный асинхронный двигатель с короткозамкнутым ротором?
  • Вопрос 3. Дать характеристику магнитного поля асинхронного двигателя.
  • Вопрос 4. Как осуществить реверс двигателя?
  • Вопрос 5. Что такое режим идеального холостого хода в двигателе?
  • Вопрос 6. Почему ток холостого хода асинхронного двигателя больше тока холостого хода трехфазного трансформатора такой же мощности?
  • Вопрос 7. Чему равно скольжение в номинальном, критическом, пусковом режимах и при холостом ходе?
  • Вопрос 8. Показать на механической характеристике основные режимы работы асинхронного двигателя.
  • Вопрос 9. Перечислить и объяснить основные способы регулирования частоты вращения асинхронного двигателя.
  • Вопрос 10:в чем особенности пускового режима асинхронного двигателя?
  • Вопрос 11.Перечислить и сравнить различные способы пуска асинхронного двигателя с короткозамкнутым ротором.
  • Вопрос 12:Объяснить особенности рабочих характеристик асинхронного двигателя.
  • Вопрос 13:Где используются асинхронные двигатели с короткозамкнутым ротором?
  • Вопрос 1.Объяснить устройство и принцип действия двигателя параллельного возбуждения.
  • Вопрос 1. Как классифицируются двигатели постоянного тока по способу возбуждения?
  • Вопрос 3.Как возникает электромагнитный момент двигателя?
  • Вопрос 4.Что такое реакция якоря и коммутация машины постоянного тока?
  • Вопрос 5.Объясните процесс пуска двигателя в ход.
  • Вопрос 6. Какими способами можно регулировать частоту вращения двигателя параллельного возбуждения и каковы преимущества и недостатки каждого из них?
  • Вопрос 7 .Объясните процесс саморегулирования двигателя.
  • Вопрос 8 . Как производится реверсирование двигателя?
  • Вопрос 9 Объясните характеристики двигателя: характеристику холостого хода, рабочие характеристики, механическуюи регулировочную.
  • Вопрос 10. Сделать оценку двигателя, укажите преимущества и недостатки двигателя параллельного возбуждения.
  • Вопрос6.Для чего используется нейтральный провод?

    Ответ6 . Нейтральный провод используется для выравнивания фазных напряжений на клеммах нагрузки. A = а; В = b ; C = c . В этом случае, падения напряжения на нагрузке остаются равными фазным напряжениям генератора. В случае, если внутреннее сопротивление генератора пренебрежимо мало (равно нулю), то напряжения на нагрузке остаются равными фазным напряжениям генератора, постоянными и не зависят от величины нагрузки. (Ток будет изменяться, а напряжение на нагрузке не изменится ).

    Вопрос7.Какими уравнениями описывается электрическое состояние цепи при несимметричной нагрузке?

    Ответ7 . При несимметричной нагрузке фаз и отсутствии нейтрального провода фазные комплексы напряжения на нагрузке,,связаны с соответствующими комплексными напряжениями источника Ů A , Ů В, Ů С уравнениями Кирхгофа:


    ;

    ;

    ;

    где

    - комплексное напряжение между нейтральными точками нагрузки и источника (сети ).


    называют напряжением смещения нейтрали.

    Напряжение смещения нейтрали рассчитывается методом 2-х узлов:


    где: Ė –комплексные ЭДС, – комплексы проводимости фаз нагрузки.

    Токи фаз нагрузки находят по закону Ома:

    İ a = a /Z a = ( A -

    )/Z a ;

    İ b = b /Z b = ( B -

    )/Z b ;

    İ a = c /Z c = ( C -

    )/Z c .

    Вопрос8.Как построить совмещенные векторные диаграммы напряжений и токов для исследованных режимов трехфазной цепи?

    Ответ8 .

    Построение векторных диаграмм начинаем с векторов линейных напряжений, задаваемых сетью и от условий опыта не зависящих. Это равносторонний треугольник образованный векторами линейных напряжений. Длина вектора соответствует линейному напряжению, а углы между векторами соответствуют сдвигу фаз между векторами напряжений.

    Построение векторной диаграммы для случая равномерной нагрузки .(симметричный режим).

    1.Выбираем комплексную плоскость (+1,j). Реальную ось +1 направляем вертикально вверх, мнимую- вдоль оси -Х. (поворот на угол +90°).

    2. Выбираем масштаб напряжений, например 1см→20В. Вектор U a(в масштабе) откладываем вдоль реальной оси +1.Конец вектора обозначаем малой буквойа .

    3.Вектора U b иU c (в масштабе) рисуем под углами +120° и –120° соответственно. Концы векторов обозначаем малыми буквамиb иc соответственно.

    4. Точку, соответствующую началу координат, обозначим малой буквой n . Это точка нейтрали приемника.

    5.Строим вектора линейных напряжений. Для этого соединяем концы фазных векторов. Получим вектора U a b =U A B , U bc =U BC , U c а =U C А. Отметим, что линейные напряжения приемника равны линейным напряжениям генератора.

    ТочкаN на векторной диаграмме, соответствующая нейтральной точке генератора, находится в центре треугольника линейных напряжений. В данном случае нейтраль генератора N совпадает с нетралью приемника n . В общем случае точку n , соответствующую нейтральной точке нагрузки, находят методом засечек. Векторы токов откладывают по отношению к соответствующим векторам фазных напряжений с учетом сдвига фаз между ними.

    Ниже приведены векторные диаграммы для различных режимов работы.

    (рис. 8).

    Режим 2. Обрыв фазы А (рис. 9):

    При обрыве фазы А и одинаковой нагрузке двух других фаз, нейтральная точка приемника n переместится на середину линейного напряжения Ů BC .СопротивленияZ b иZ c окажутся соединенными последовательно и включенными на линейное напряжение BC . Падение напряжения между точками А иn увеличится, а фазные напряжения b и c станут равными половине линейного BC .


    Режим 3. Короткое замыкание фазы А (рис. 9).

    При замыкании фазы А и одинаковой нагрузке двух других фаз (то есть при соединении начала нагрузки фазы А с нулевой точкой нагрузки) точка nперемещается в точку А. Фазное напряжение Ů а становится равным нулю, ток İ a увеличивается, а фазные напряжения b и c становятся равными линейным.

    (рис. 10).

    Сопротивления, Z а ≠Z b ≠Z c , фазные напряжения приемника а ≠ b ≠ c , между точкамиNиnпоявляется напряжение смещения нейтрали.

    4.1 Вначале строим треугольник линейных напряжений.

    4.2. Методом засечек (циркулем или линейкой) из каждой вершины откладываем соответствующие вектора фазных напряжений приемника. Точка пересечения дуг даст точку нейтрали приемника n . Точку нейтрали генератораN оставляем на прежнем месте.

    4.3 Соединяем точку n иN . Это вектор напряжения смещения нейтралиU nN (в масштабе).

    4.4 Строим вектора фазных токов нагрузки. В случае, если нагрузкой являются лампочки, которые можно представить как активные сопротивления, то сдвига фаз между фазным напряжением и фазным током нагрузки не будет. Поэтому вектора токов откладываем (в масштабе) вдоль соответствующих векторов фазных напряжений.

    ***) В общем случае надо определить сдвиги фаз между током и соответствующим фазным напряжением по закону Ома в комплексной форме и строить вектор тока с помощью транспортира.

    Режим 5 . Неравномерная нагрузка с нейтральным проводом (рис.11).

    При наличии нейтрального провода фазные напряжения приемника становятся равными фазным напряжениям источника A = а; В = b ; C = c:


    ← Вернуться

    ×
    Вступай в сообщество «page-electric.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «page-electric.ru»