Опирание балок над окном на кирпичную кладку. Сбор нагрузок на перекрытие и балку. Кирпичные проемы и перемычки

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Если проектируется строительство двухэтажного или одноэтажного дома, но с подвалом или чердаком, необходимо правильно рассчитать и возвести межэтажные перекрытия. Рассмотрим этапы и нюансы выполнения перекрытия по деревянным балкам и выполним расчет сечений балок, обеспечивающих достаточную прочность.

Устройство межэтажных перекрытий нуждается в особом внимании, ведь выполненные «на глазок», они могут не выдержать приходящихся на них нагрузок и обрушиться, либо потребовать излишних, не мотивированных затрат. Поэтому нужно всесторонне обдумать и рассчитать один или несколько возможных вариантов. Окончательное решение можно принять, сравнив стоимость или доступность приобретения материалов.

Требования к межэтажным перекрытиям

Межэтажные перекрытия обязаны выдерживать постоянные и переменные нагрузки, то есть кроме собственного веса выдерживать вес мебели и людей. Они должны быть достаточно жёсткими и не допускать превышение максимального прогиба, обеспечивать достаточную шумо- и теплоизоляцию.

Удельные нагрузки от мебели и людей для жилого помещения принимаются согласно нормам. Однако если планируется установка чего-то массивного, например, аквариума на 1000 л или камина из натурального камня, это обязательно нужно учитывать.

Жесткость балок определяется расчётом и выражается в допустимом изгибе на длину пролёта. Допустимый изгиб зависит от вида перекрытия и материала покрытия. Основные предельные прогибы, определяемые СНиП, приведены в таблице 1.

Таблица 1

Элементы конструкций Предельные прогибы в долях пролёта, не более
1. Балки междуэтажных перекрытий 1/250
2. Балки чердачных перекрытий 1/200
3. Покрытия (кроме ендов):
а) прогоны, стропильные ноги 1/200
б) балки консольные 1/150
в) фермы, клееные балки (кроме консольных) 1/300
г) плиты 1/250
д) обрешётки, настилы 1/150
4. Несущие элементы ендов 1/400
5. Панели и элементы фахверха 1/250
Примечания:
1. При наличии штукатурки прогиб элементов перекрытий только от длительной временной нагрузки не должен превышать 1/350 пролёта.
2. При наличии строительного подъёма предельный прогиб клееных балок допускается увеличивать до 1/200 пролета.

Учтите, что напольное покрытие в виде керамической плитки или бетонной стяжки, склонной к растрескиванию, могут ещё более ужесточить требования по допустимому прогибу, особенно при достаточно длинных пролётах.

Чтобы снизить нагрузки на балки, следует при возможности располагать их параллельно коротким стенам, с одинаковым шагом. Максимальная длина пролёта при перекрытии их деревянными балками — 6 м.

Типы межэтажных перекрытий

По назначению перекрытия делятся на:

  • межэтажные;
  • чердачные;
  • подвальные (цокольные).

Особенности их конструкции заключаются в допустимых нагрузках и устройстве паро- и теплоизоляции. Если чердак не предназначается для проживания или хранения массивных предметов, переменные нагрузки при расчёте прогиба можно уменьшить до 50-100 кг/м 2 .

Теплоизоляция между двумя жилыми этажами может показаться излишней, но шумоизоляция для большинства желательный параметр, а достигается это, как правило, одними и теми же материалами. Следует принимать во внимание, что чердачные и подвальные перекрытия нуждаются в более толстом слое теплоизоляционного материала. Плёночный материал для пароизоляции в чердачном перекрытии должен быть расположен под слоем утеплителя, а в подвальном — над ним. Для профилактики возникновения сырости и поражения конструкций грибком, все помещения должны быть оборудованы вентиляцией.

Варианты перекрытий: 1 — дощатый щит; 2 — пароизоляция; 3 — теплоизоляция; 4 — разреженный настил; 5 — доски; 6 — напольное покрытие

Конструкция перекрытий также может быть различной:

Скрытые балки зашиты с обеих сторон и не видны. Открытые — выступают из потолка и служат элементами декора.

На рисунке ниже показано, какой может быть структура перекрытия мансардного этажа со щитовым накатом и с подшивкой из досок.

а — со щитовым накатом; б — с подшивкой из досок; 1 — дощатый пол; 2 — полиэтиленовая пленка; 3 — утеплитель; 4 — пароизоляция; 5 — деревянные балки; 6 — черепные бруски; 7 — щитовой накат; 8 — отделка; 9 — подшивка из досок

Виды креплений и соединений деревянных балок

В зависимости от конструкции и материала несущих стен деревянные балки крепятся:

  • в предусмотренные в кирпичной или блочной кладке гнёзда, заглубив брус или бревно не менее 150 мм, а доску не менее 100 мм;
  • на предусмотренные в кирпичной или блочной кладке полочки (уступы). Применяется в случае, если толщина стены второго этажа меньше, чем первого;
  • в вырезанные пазы в бревенчатых стенах на глубину не менее 70 мм;
  • к брусу верхней обвязки каркасного дома;
  • к металлическим опорам-кронштейнам, закреплённым на стенах.

1 — опора на кирпичную стену; 2 — раствор; 3 — анкер; 4 — изоляция толем; 5 — деревянная балка; 6 — опора на деревянную стену; 7 — болт

Если длины балки не хватает, можно её удлинить, соединив (срастив) по длине одним из известных способов с помощью деревянных штырьков и столярного клея. При выборе типа соединения руководствуйтесь направлением приложения нагрузки. Сращенные брусы желательно усилить металлическими накладками.

а — сжатие; б — растяжение; в — изгиб

О деревянных балках перекрытия

В строительстве используют балки прямоугольного, круглого или частично круглого сечения. Наиболее надежными являются пиломатериалы прямоугольного сечения, а остальные применяют в условиях отсутствия бруса или из соображений экономии, при наличии таких материалов в хозяйстве. Ещё большей прочностью обладают клееные материалы из древесины. Балки из клееного бруса или двутавра могут устанавливаться на пролёты до 12 м.

Самый недорогой и востребованный вид древесины — сосна, но используют также и другие породы хвойных — лиственницу, ель. Из ели делают перекрытия в дачных, небольших домиках. Лиственница хороша для строительства помещений с повышенной влажностью (баня, бассейн в доме).

Отличаются материалы также сортностью, которая влияет на несущую способность балок. Сорт 1, 2 и 3 (см. ГОСТ 8486-86) подходят для балок перекрытия, но 1 сорт для такой конструкции может быть излишне дорогим, а 3 сорт лучше использовать на небольших пролётах.

Расчет несущих балок

Для определения сечения и шага балок необходимо рассчитать нагрузку на перекрытие. Сбор нагрузок выполняют по методике и с учётом коэффициентов, изложенных в СНиП 2.01.07-85 (СП 20.13330.2011).

Расчет нагрузок

Общая нагрузка рассчитывается суммированием постоянной и переменной нагрузки, определённых с учётом нормативных коэффициентов. При практических расчётах сначала задаются определённой конструкцией, включающей и предварительную раскладку балок определённого сечения, а затем корректируют, исходя из полученных результатов. Так что на первом этапе выполните эскиз всех слоёв «пирога» перекрытия.

1. Собственная удельная масса перекрытия

Удельная масса перекрытия складывается из составляющих её материалов и делится на горизонтальную суммарную длину балок перекрытия. Для расчёта массы каждого элемента нужно рассчитать объём и умножить на плотность материала. Для этого воспользуйтесь таблицей 2.

Таблица 2

Наименование материала Плотность или насыпная плотность, кг/м 3
Асбоцементный лист 750
Базальтовая вата (минеральная) 50-200 (от степени уплотнения)
Берёза 620-650
Бетон 2400
Битум 1400
Гипсокартон 500-800
Глина 1500
ДСП 1000
Дуб 655-810
Ель 420-450
Железобетон 2500
Керамзит 200-1000 (от коэффициента вспенивания)
Керамзитобетон 1800
Кирпич полнотелый 1800
Линолеум 1600
Опилки 70-270 (от фракции, породы дерева и влажности)
Паркет, 17 мм, дуб 22 кг/м 2
Паркет, 20 мм, щитовой 14 кг/м 2
Пенобетон 300-1000
Пенопласт 60
Плитка керамическая 18 кг/м 2
Рубероид 600
Сетка проволочная 1,9-2,35 кг/м 2
Сосна 480-520
Сталь углеродистая 7850
Стекло 2500
Стекловата 350-400
Фанера клееная 600
Шлакоблок 400-600
Штукатурка 350-800 (от состава)

Для древесных материалов и отходов плотность зависит от влажности. Чем выше влажность — тем тяжелее материал.

К постоянным нагрузкам относятся и перегородки (стены), удельный вес которых принимается ориентировочно 50 кг/м 2 .

Обстановка комнаты, люди, животные — всё это переменная нагрузка на перекрытие. Согласно табл. 8.3 СП 20.13330.2011, для жилых помещений нормативная распределённая нагрузка составляет 150 кг/м 2 .

Суммарная нагрузка не определяется простым сложением, необходимо принять коэффициент надёжности, который по тому же СНиП (п. 8.2.2) составляет:

  • 1,2 — при удельной массе меньше 200 кг/м 2 ;
  • 1,3 — при удельной массе больше 200 кг/м 2 .

4. Пример расчета

В качестве примера возьмём комнату длиной 5 и шириной 3 м. Через каждые 600 мм длины положим балки (9 шт.) из сосны сечением 150х100 мм. Перекроем балки доской толщиной 40 мм и настелим линолеум толщиной 5 мм. Со стороны первого этажа зашьём балки фанерой толщиной 10 мм, а внутри перекрытия уложим слой минеральной ваты толщиной 120 мм. Перегородки отсутствуют.

1 — балка; 2 — доска; 3 — утепленный линолеум 5 мм

Расчет постоянной удельной нагрузки на площадь комнаты (5 х 3 = 15 м 2) приведен в таблице 3.

Таблица 3

Расчетная нагрузка на балку (qр) — 250 х 0,6 м = 150 кг/м (1,5 кг/см).

Расчёт допустимого прогиба

Принимаем допустимый прогиб межэтажного перекрытия — L / 250, т. е. для трёхметрового пролёта максимальный прогиб не должен превышать 330 / 250 = 1,32 см.

Так как балка обоими концами лежит на опоре, расчёт максимального прогиба ведётся по формуле:

  • h = (5 х qр х L4) / (384 х E х J)
  • L — длина балки, L = 330 см;
  • Е — модуль упругости, Е = 100 000 кг/см 2 (для древесины вдоль волокон по СНиП);
  • J — момент инерции, для бруса прямоугольного сечения J = 10 х 153 / 12 = 2812,5 см 4 .
  • Для нашего примера:

    • h = (5 х 1,5 х 3304) / (384 х 100000 х 2812,5) = 0,82 см

    Полученный результат по сравнению с допустимым прогибом имеет 60% запас, что представляется чрезмерным. Следовательно, расстояние между балками можно увеличить, снизив их количество и повторить расчёт.

    В заключение предлагаем посмотреть видео о расчёте перекрытия по деревянным балкам с помощью специальной программы:

    Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена , нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях - остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

    Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

    Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (М рз) от 25 и выше.

    При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

    Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

    Пример расчета кирпичной стены.

    Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

    Выбор расчетного сечения .

    В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II , так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты m g и φ минимальны.

    В стенах с проемами сечение принимается на уровне низа перемычек.

    Давайте рассмотрим сечение I-I.

    Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P 1 =1,8т и вышележащих этажей G=G п +P 2 +G 2 = 3,7т:

    N = G + P 1 = 3,7т +1,8т = 5,5т

    Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P 1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

    Нагрузка от вышележащих этажей G считается приложенной по центру.

    Так как нагрузка от плиты перекрытия (P 1) приложена не по центру сечения, а на расстоянии от него равном:

    e = h/2 - a/3 = 250мм/2 - 150мм/3 = 75 мм = 7,5 см,

    то она будет создавать изгибающий момент (М) в сечении I-I. Момент - это произведение силы на плечо.

    M = P 1 * e = 1,8т * 7,5см = 13,5 т*см

    Тогда эксцентриситет продольной силы N составит:

    e 0 = M / N = 13,5 / 5,5 = 2,5 см

    Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета e ν =2см, тогда общий эксцентриситет равен:

    e 0 = 2,5 + 2 = 4,5 см

    y=h/2=12,5см

    При e 0 =4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

    Прочность кл адки внецентренно сжатого элемента определяется по формуле:

    N ≤ m g φ 1 R A c ω

    Коэффициенты m g и φ 1 в рассматриваемом сечении I-I равны 1.

    Требуется собрать нагрузки на монолитную балку перекрытия жилого дома (балка по оси «2» в осях «Б-В» на рис.1). Размеры сечения балки: h = 0,5 м, b = 0,4 м. Конструкцию пола принять по рисунку в .

    Решение

    Данный тип здания относится ко II классу ответственности. Коэффициент надежности по ответственности γн = 1,0.

    Состав пола и значения постоянных нагрузок примем из примера 1.1.

    Нагрузки, действующие на балку, принимаются линейно распределенными (кН/м). Для этого равномерно распределенные нагрузки на перекрытие умножаются на ширину грузового участка, равному для средних балок шагу рам. В нашем примере см. рис. 1 ширина грузового участка составляет В = 6,6 м. Остается умножить постоянную нагрузку, вычисленную в примере 1.1, на данную величину и записать в таблицу 1:

    q1 = 5,89*В = 5,89*6,6 = 38,87 кН/м;

    q1p = 6,63*В = 6,63*6,6 = 43,76 кН/м.

    Таблица 1

    Сбор нагрузок на балку перекрытия

    кратковременная ν1

    длительная р1

    Вид нагрузки

    Норм. кН/м

    Коэф. γt

    Расч. кН/м

    1. Ж.б. плита + пол

    38,87

    43,76

    2. Собственный вес балки

    5,0

    1,1

    5,5

    Всего:

    43,87

    49,26

    6,53

    2,29

    1,3

    1,3

    8,49

    2,98

    2. Перегородки (длительная) р2

    3,3

    1,3

    4,29

    Вычислим нагрузку от собственного веса балки.

    Объемный вес железобетона равен 2500 кг/м3 (25 кН/м3). При высоте балки h = 0,5 м и ее ширине b = 0,4 м нормативное значение нагрузки от собственного веса составляет

    q2 = 25*h*b*γн =25*0,5*0,4*1,0 =5,0 кН/м.

    Коэффициент надежности по нагрузке γt = 1,1, тогда расчетное значение составит:

    q2р = q2*γt =5*1,1 =5,5 кН/м.

    Суммарная нормативная постоянная нагрузка составляет

    q = q1 + q2 = 38,87 + 5,0 = 43,87 кН/м;

    расчетная:

    qр = q1р + q2р = 43,76 + 5,5 = 49,26 кН/м.

    Понижающие коэффициенты φ1, φ2, φ3 или φ4, при расчете балок нормативные значения нагрузок, допускается снижать в зависимости от грузовой площади А, м2, рассчитываемого элемента умножением на коэффициент сочетания φ. При грузовой площади А = 6,6*7,2 = 47,52 м2 и при А = 47,52 м2 > А1 = 9,0 м2 для помещений коэффициент сочетания φ1 определяется по формуле:

    φ1 = 0,4 + 0,6/ √(А/А1) = 0,4 + 0,6/√(47,52/9,0) = 0,66.

    Полное (кратковременное) нормативное значение нагрузки от людей и мебели для квартир жилых зданий составляет 1,5 кПа (1,5 кН/м2). Учитывая коэффициент надежности по ответственности здания γн = 1,0 и коэффициент сочетания φ1 = 0,66, итоговая нормативная кратковременная полезная нагрузка составляет:

    ν1 = 1,5*В*γн*φ1 = 1,5*6,6*1,0*0,66 = 6,53 кН/м.

    При нормативном значении временной нагрузки менее 2,0 кПа коэффициент надежности по нагрузке γt принимается равным γt = 1,3. Тогда расчетное значение составляет:

    ν1р = ν1*γt = 6,53*1,3 = 8,49 кН/м.

    Длительную полезную нагрузку получаем путем умножения ее полного значения на коэффициент 0,35 т.е:

    р1 = 0,35*ν1 = 0,35*6,53 = 2,29 кН/м;

    р1р = р1*γt = 2,29*1,3 = 2,98 кН/м.

    Нормативное значение равномерно распределенной нагрузки от перегородок составляет не менее 0,5 кН/м2. Приводим ее к линейно распределенной нагрузке на балку путем умножения на ширину грузового участка В=6,6 м:

    р2 = 0,5*В*γн = 0,5*6,6*1,0 = 3,3 кН/м.

    Расчетное значение нагрузки тогда:

    р2р = р2*γt = 3,3*1,3 = 4,29 кН/м.

    I сочетание: постоянная нагрузка (собственный вес перекрытия и балки) + полезная (кратковременная).

    При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициент Ψl, Ψt вводить не следует.

    q1 = q + ν1 = 43,87 + 6,53 = 50,4 кН/м;

    q1р = qр + ν1р = 49,26 + 8,49 = 57,75 кН/м.

    II сочетание: постоянная нагрузка (собственный вес перекрытия и балки) + полезная (кратковременная) + нагрузка от перегородок (длительная).

    Для основных сочетаний коэффициент сочетаний длительных нагрузок Ψ1 принимается: для первой (по степени влияния) длительной нагрузки — 1,0, для остальных — 0,95. Коэффициент Ψ2 для кратковременных нагрузок принимается: для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,9, для остальных — 0,7.

    Поскольку во II сочетании присутствует одна кратковременная и одна длительная нагрузка, то коэффициент Ψl и Ψt = 1,0 .

    qII = q + ν1 + р2 = 43,87 + 6,53 + 3,3 = 53,7 кН/м;

    qIIр = qр+ ν1р + р2р = 49,26 + 8,49 + 4,29 = 62,04 кН/м.

    Если проектируется строительство двухэтажного или одноэтажного дома, но с подвалом или чердаком, необходимо правильно рассчитать и возвести межэтажные перекрытия. Рассмотрим этапы и нюансы выполнения перекрытия по деревянным балкам и выполним расчет сечений балок, обеспечивающих достаточную прочность.

    Устройство межэтажных перекрытий нуждается в особом внимании, ведь выполненные «на глазок», они могут не выдержать приходящихся на них нагрузок и обрушиться, либо потребовать излишних, не мотивированных затрат. Поэтому нужно всесторонне обдумать и рассчитать один или несколько возможных вариантов. Окончательное решение можно принять, сравнив стоимость или доступность приобретения материалов.

    Требования к межэтажным перекрытиям

    Межэтажные перекрытия обязаны выдерживать постоянные и переменные нагрузки, то есть кроме собственного веса выдерживать вес мебели и людей. Они должны быть достаточно жёсткими и не допускать превышение максимального прогиба, обеспечивать достаточную шумо- и теплоизоляцию.


    Удельные нагрузки от мебели и людей для жилого помещения принимаются согласно нормам. Однако если планируется установка чего-то массивного, например, аквариума на 1000 л или камина из натурального камня, это обязательно нужно учитывать.

    Жесткость балок определяется расчётом и выражается в допустимом изгибе на длину пролёта. Допустимый изгиб зависит от вида перекрытия и материала покрытия. Основные предельные прогибы, определяемые СНиП, приведены в таблице 1.

    Таблица 1

    Элементы конструкций

    Предельные прогибы в долях пролёта, не более

    1. Балки междуэтажных перекрытий

    1/250

    2. Балки чердачных перекрытий

    1/200

    3. Покрытия (кроме ендов):

    а) прогоны, стропильные ноги

    1/200

    б) балки консольные

    1/150

    в) фермы, клееные балки (кроме консольных)

    1/300

    г) плиты

    1/250

    д) обрешётки, настилы

    1/150

    4. Несущие элементы ендов

    1/400

    5. Панели и элементы фахверха

    1/250

    Примечания:

    1. При наличии штукатурки прогиб элементов перекрытий только от длительной временной нагрузки не должен превышать 1/350 пролёта.

    2. При наличии строительного подъёма предельный прогиб клееных балок допускается увеличивать до 1/200 пролета.

    Учтите, что напольное покрытие в виде керамической плитки или бетонной стяжки, склонной к растрескиванию, могут ещё более ужесточить требования по допустимому прогибу, особенно при достаточно длинных пролётах.

    Чтобы снизить нагрузки на балки, следует при возможности располагать их параллельно коротким стенам, с одинаковым шагом. Максимальная длина пролёта при перекрытии их деревянными балками - 6 м.


    Типы межэтажных перекрытий

    По назначению перекрытия делятся на:

    · межэтажные;

    · чердачные;

    · подвальные (цокольные).

    Особенности их конструкции заключаются в допустимых нагрузках и устройстве паро- и теплоизоляции. Если чердак не предназначается для проживания или хранения массивных предметов, переменные нагрузки при расчёте прогиба можно уменьшить до 50–100 кг/м 2 .

    Теплоизоляция между двумя жилыми этажами может показаться излишней, но шумоизоляция для большинства желательный параметр, а достигается это, как правило, одними и теми же материалами. Следует принимать во внимание, что чердачные и подвальные перекрытия нуждаются в более толстом слое теплоизоляционного материала. Плёночный материал для пароизоляции в чердачном перекрытии должен быть расположен под слоем утеплителя, а в подвальном - над ним. Для профилактики возникновения сырости и поражения конструкций грибком, все помещения должны быть оборудованы вентиляцией.


    Варианты перекрытий: 1 - дощатый щит; 2 - пароизоляция; 3 - теплоизоляция; 4 - разреженный настил; 5 - доски; 6 - напольное покрытие

    Конструкция перекрытий также может быть различной:

    · с открытыми и скрытыми балками;

    · с различными типами несущих балок;

    · с разными материалами заполнения и обшивки перекрытия.

    Скрытые балки зашиты с обеих сторон и не видны. Открытые - выступают из потолка и служат элементами декора.

    На рисунке ниже показано, какой может быть структура перекрытия мансардного этажа со щитовым накатом и с подшивкой из досок.


    а - со щитовым накатом; б - с подшивкой из досок; 1 - дощатый пол; 2 - полиэтиленовая пленка; 3 - утеплитель; 4 - пароизоляция; 5 - деревянные балки; 6 - черепные бруски; 7 - щитовой накат; 8 - отделка; 9 - подшивка из досок

    Виды креплений и соединений деревянных балок

    В зависимости от конструкции и материала несущих стен деревянные балки крепятся:

    · в предусмотренные в кирпичной или блочной кладке гнёзда, заглубив брус или бревно не менее 150 мм, а доску не менее 100 мм;

    · на предусмотренные в кирпичной или блочной кладке полочки (уступы). Применяется в случае, если толщина стены второго этажа меньше, чем первого;

    · в вырезанные пазы в бревенчатых стенах на глубину не менее 70 мм;

    · к брусу верхней обвязки каркасного дома;

    · к металлическим опорам-кронштейнам, закреплённым на стенах.


    1 - опора на кирпичную стену; 2 - раствор; 3 - анкер; 4 - изоляция толем; 5 - деревянная балка; 6 - опора на деревянную стену; 7 - болт

    Если длины балки не хватает, можно её удлинить, соединив (срастив) по длине одним из известных способов с помощью деревянных штырьков и столярного клея. При выборе типа соединения руководствуйтесь направлением приложения нагрузки. Сращенные брусы желательно усилить металлическими накладками.


    а - сжатие; б - растяжение; в - изгиб

    О деревянных балках перекрытия

    В строительстве используют балки прямоугольного, круглого или частично круглого сечения. Наиболее надежными являются пиломатериалы прямоугольного сечения, а остальные применяют в условиях отсутствия бруса или из соображений экономии, при наличии таких материалов в хозяйстве. Ещё большей прочностью обладают клееные материалы из древесины. Балки из клееного бруса или двутавра могут устанавливаться на пролёты до 12 м.


    Самый недорогой и востребованный вид древесины - сосна, но используют также и другие породы хвойных - лиственницу, ель. Из ели делают перекрытия в дачных, небольших домиках. Лиственница хороша для строительства помещений с повышенной влажностью (баня, бассейн в доме).

    Отличаются материалы также сортностью, которая влияет на несущую способность балок. Сорт 1, 2 и 3 (см. ГОСТ 8486–86) подходят для балок перекрытия, но 1 сорт для такой конструкции может быть излишне дорогим, а 3 сорт лучше использовать на небольших пролётах.

    Расчет несущих балок

    Для определения сечения и шага балок необходимо рассчитать нагрузку на перекрытие. Сбор нагрузок выполняют по методике и с учётом коэффициентов, изложенных в СНиП 2.01.07–85 (СП 20.13330.2011).

    Расчет нагрузок

    Общая нагрузка рассчитывается суммированием постоянной и переменной нагрузки, определённых с учётом нормативных коэффициентов. При практических расчётах сначала задаются определённой конструкцией, включающей и предварительную раскладку балок определённого сечения, а затем корректируют, исходя из полученных результатов. Так что на первом этапе выполните эскиз всех слоёв «пирога» перекрытия.


    1. Собственная удельная масса перекрытия

    Удельная масса перекрытия складывается из составляющих её материалов и делится на горизонтальную суммарную длину балок перекрытия. Для расчёта массы каждого элемента нужно рассчитать объём и умножить на плотность материала. Для этого воспользуйтесь таблицей 2.

    Таблица 2

    Наименование материала

    Плотность или насыпная плотность, кг/м 3

    Асбоцементный лист

    Базальтовая вата (минеральная)

    50–200 (от степени уплотнения)

    Берёза

    620–650

    Бетон

    2400

    Битум

    1400

    Гипсокартон

    500–800

    Глина

    1500

    ДСП

    1000

    Дуб

    655–810

    Ель

    420–450

    Железобетон

    2500

    Керамзит

    200–1000 (от коэффициента вспенивания)

    Керамзитобетон

    1800

    Кирпич полнотелый

    1800

    Линолеум

    1600

    Опилки

    70–270 (от фракции, породы дерева и влажности)

    Паркет, 17 мм, дуб

    22 кг/м 2

    Паркет, 20 мм, щитовой

    14 кг/м 2

    Пенобетон

    300–1000

    Пенопласт

    Плитка керамическая

    18 кг/м 2

    Рубероид

    Сетка проволочная

    1,9–2,35 кг/м 2

    Сосна

    480–520

    Сталь углеродистая

    7850

    Стекло

    2500

    Стекловата

    350–400

    Фанера клееная

    Шлакоблок

    400–600

    Штукатурка

    350–800 (от состава)

    Для древесных материалов и отходов плотность зависит от влажности. Чем выше влажность - тем тяжелее материал.

    К постоянным нагрузкам относятся и перегородки (стены), удельный вес которых принимается ориентировочно 50 кг/м 2 .

    Обстановка комнаты, люди, животные - всё это переменная нагрузка на перекрытие. Согласно табл. 8.3 СП 20.13330.2011, для жилых помещений нормативная распределённая нагрузка составляет 150 кг/м 2 .


    Суммарная нагрузка не определяется простым сложением, необходимо принять коэффициент надёжности, который по тому же СНиП (п. 8.2.2) составляет:

    · 1,2 - при удельной массе меньше 200 кг/м 2 ;

    · 1,3 - при удельной массе больше 200 кг/м 2 .

    4. Пример расчета

    В качестве примера возьмём комнату длиной 5 и шириной 3 м. Через каждые 600 мм длины положим балки (9 шт.) из сосны сечением 150х100 мм. Перекроем балки доской толщиной 40 мм и настелим линолеум толщиной 5 мм. Со стороны первого этажа зашьём балки фанерой толщиной 10 мм, а внутри перекрытия уложим слой минеральной ваты толщиной 120 мм. Перегородки отсутствуют.


    1 - балка; 2 - доска; 3 - утепленный линолеум 5 мм

    Расчет постоянной удельной нагрузки на площадь комнаты (5 х 3 = 15 м 2) приведен в таблице 3.

    Таблица 3

    Материал

    Объем, м 3

    Плотность, кг/м 3

    Масса, кг

    Брус (сосна)

    9 х 0,15 х 0,1 х 3,3 = 0,4455

    222,75

    14,85

    Доска (сосна)

    15 х 0,04 = 0,6

    20,0

    Фанера

    15 х 0,01 = 0,15

    Линолеум

    15 х 0,005 = 0,075

    1600

    Минвата

    15 х 0,12-0,405 = 1,395

    139,5

    Итого:

    58,15

    С учетом k = 1,2

    Расчетная нагрузка на балку (qр) - 250 х 0,6 м = 150 кг/м (1,5 кг/см).


    Расчёт допустимого прогиба

    Принимаем допустимый прогиб межэтажного перекрытия - L / 250, т. е. для трёхметрового пролёта максимальный прогиб не должен превышать 330 / 250 = 1,32 см.

    Так как балка обоими концами лежит на опоре, расчёт максимального прогиба ведётся по формуле:

    · h = (5 х qр х L4) / (384 х E х J)

    где:

    · L - длина балки, L = 330 см;

    · Е - модуль упругости, Е = 100 000 кг/см 2 (для древесины вдоль волокон по СНиП);

    · J - момент инерции, для бруса прямоугольного сечения J = 10 х 153 / 12 = 2812,5 см 4 .

    Для нашего примера:

    · h = (5 х 1,5 х 3304) / (384 х 100000 х 2812,5) = 0,82 см

    Полученный результат по сравнению с допустимым прогибом имеет 60% запас, что представляется чрезмерным. Следовательно, расстояние между балками можно увеличить, снизив их количество и повторить расчёт.

    В заключение предлагаем посмотреть видео о расчёте перекрытия по деревянным балкам с помощью специальной программы:

    http :// www . rmnt . ru / - сайт RMNT . ru

    6.44. При опирании на кирпичные стены и столбы железобетонных прогонов, балок и настилов, кроме расчета на внецентренное сжатие и смятие сечений ниже опорного узла, должно быть проверено на центральное сжатие сечение по кладке и железобетонным элементам.

    Расчет опорного узла при центральном сжатии следует производить по формуле

    N £ gpRA, (51)

    где А - суммарная площадь сечения кладки и железобетонных элементов в опорном узле в пределах контура стены или столба, на которые уложены элементы;

    R -

    g - коэффициент, зависящий от величины площади опирания железобетонных элементов в узле;

    р - коэффициент, зависящий от типа пустот в железобетонном элементе.

    Коэффициент g при опирании всех видов железобетонных элементов (прогонов, балок, перемычек, поясов, настилов) принимается:

    g = 1, если A b £ 0,1 A ;

    g = 0,8, если A b £ 0,4 A,

    где A b - суммарная площадь опирания железобетонных элементов в узле.

    При промежуточных значениях А b коэффициент g определяется по интерполяции.

    Если железобетонные элементы (балки, настилы и др.), опертые на кладку с различных сторон, имеют одинаковую высоту и площадь их опирания в узле A b > 0,8 А, разрешается производить расчет без учета коэффициента g, принимая в формуле (51) А = А b .

    Коэффициент р принимается равным:

    при сплошных элементах и настилах с круглыми пустотами - 1;

    при настилах с овальными пустотами и наличии хомутов на опорных участках - 0,5.

    6.45. В сборных железобетонных настилах с незаполненными пустотами кроме проверки несущей способности опорного узла в целом, должна быть проверена несущая способность горизонтального сечения, пересекающего ребра настила, по формуле

    N £. nR b A n + RA k , (52)

    где R b - расчетное сопротивление бетона осевому сжатию, принимается в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций;

    А n - площадь горизонтального сечения настила, ослабленная пустотами, на длине опирания настила на кладку (суммарная площадь сечения ребер);

    R - расчетное сопротивление кладки сжатию;

    А k - площадь сечения кладки в пределах опорного узла (без учета части сечения, занимаемой участками настилов);

    п = 1,25 - для тяжелых бетонов и п = 1,1 для бетонов на пористых заполнителях.

    6.46. Расчет заделки в кладку консольных балок (рис. 14,а ) следует производить по формуле

    где Q - расчетная нагрузка от веса балки и приложенных к ней нагрузок;

    R c - расчетное сопротивление кладки при смятии;

    а - глубина заделки балки в кладку;

    b - ширина полок балки;

    e 0 - эксцентриситет расчетной силы относительно середины заделки

    с - расстояние силы Q от плоскости стены.

    Необходимую глубину заделки следует определять по формуле

    Если заделка конца балки не удовлетворяет расчету по формуле (53), то следует увеличить глубину заделки или уложить распределительные подкладки под балкой и над ней.

    Если эксцентриситет нагрузки относительно центра площади заделки превышает более чем в 2 раза глубину заделки (e 0 > 2а ), напряжения от сжатия могут не учитываться: расчет в этом случае производится по формуле

    При применении распределительных подкладок в виде узких балок с шириной не более 1/3 глубины заделки допускается принимать под ними прямоугольную эпюру напряжений (рис. 14,б ).

    Рис. 14. Расчетные схемы заделки консольных балок

    ПЕРЕМЫЧКИ И ВИСЯЧИЕ СТЕНЫ

    6.47. Железобетонные перемычки следует рассчитывать на нагрузку от перекрытий и на давление от свежеуложенной, неотвердевшей кладки, эквивалентное весу пояса кладки высотой, равной 1/3 пролета для кладки в летних условиях и целому пролету для кладки в зимних условиях (в стадии оттаивания).

    Примечания: 1. Допускается при наличии соответствующих конструктивных мероприятий (выступы в сборных перемычках, выпуски арматуры и т.п.) учитывать совместную работу кладки с перемычкой.

    2. Нагрузки на перемычки от балок и настилов перекрытий не учитываются, если они расположены выше квадрата кладки со стороной, равной пролету перемычки, а при оттаивающей кладке, выполненной способом замораживания, - выше прямоугольника кладки с высотой, равной удвоенному пролету перемычки в свету. При оттаивании кладки перемычки допускается усиливать постановкой временных стоек на клиньях на период оттаивания и первоначального твердения кладки.

    3. В вертикальных швах между брусковыми перемычками, в случаях когда не обеспечивается требуемое сопротивление их теплопередаче, следует предусматривать укладку утеплителя.

    6.48. Кладку висячих стен, поддерживаемых рандбалками, следует проверять на прочность при смятии в зоне над опорами рандбалок. Должна быть проверена также прочность кладки при смятии под опорами рандбалок. Длину эпюры распределения давления в плоскости контакта стены и рандбалки следует определять в зависимости от жесткости кладки и рандбалки. При этом рандбалка заменяется эквивалентным по жесткости условным поясом кладки, высота которого определяется по формуле

    где E b - начальный модуль упругости бетона;

    I red - момент инерции приведенного сечения рандбалки, принимаемый в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций;

    Е - модуль деформации кладки, определяемый по формуле (7);

    h - толщина висячей стены.

    Жесткость стальных рандбалок определяется как произведение

    Е s ×I s ,

    где Е s и I s - модуль упругости стали и момент инерции сечения рандбалки.

    6.49. Эпюру распределения давления в кладке над промежуточными опорами неразрезных рандбалок следует принимать по треугольнику при a £2s (рис. 15,а ) и по трапеции при 3s ³ а >2s (рис. 15,б ) с меньшим ее основанием, равным a - 2s. Максимальная величина напряжений смятия s с (высота треугольника или трапеции) должна определяться из условия равенства объема эпюры давления и опорной реакции рандбалки по формулам:

    при треугольной эпюре давления (a £2s )

    при трапециевидной эпюре давления (3s > а >2s )

    где а - длина опоры (ширина простенка);

    N - опорная реакция рандбалки от нагрузок, расположенных в пределах ее пролета и длины опоры, за вычетом собственного веса рандбалки;

    s = 1,57H 0 - длина участка эпюры распределения давления в каждую сторону от грани опоры;

    h - толщина стены.

    Если а > 3s, то в формуле (58) вместо а следует принимать расчетную длину опоры, равную a 1 = 3s, состоящую из двух участков длиной по 1,5s с каждой стороны простенка (рис. 15,в ).

    6.50. Эпюру распределения давления над крайними опорами рандбалок, а также над опорами однопролетных рандбалок следует принимать треугольной (рис. 15,г ) с основанием

    l c = a 1 + s 1 (59)

    где s 1 = 0,9 h 0 - длина участка распределения давления от грани опоры;

    a 1 - длина опорного участка рандбалки, но не более 1,5H (H - высота рандбалки).

    Максимальное напряжение над опорой рандбалки

    Рис. 15. Распределение давления в кладке над опорами висячих стен

    а - на средних опорах неразрезных балок при a £2s ; б - то же, при 3s ³ а >2s ; в - то же, при а > 3s ; г - на крайних опорах неразрезных балок и на опорах однопролетных рандбалок

    6.51. Прочность кладки висячих стен при местном сжатии в зоне, расположенной над опорами рандбалок, следует проверять по указаниям, приведенным в пп. 4.13 - 4.16.

    Расчет на местное сжатие кладки под опорами неразрезных рандбалок следует производить для участка, расположенного в пределах опоры длиной не более 3H от ее края (H - высота рандбалки) и длиной не более 1,5Н для однопролетных рандбалок и крайних опор неразрезных рандбалок. Длина опоры однопролетных рандбалок должна быть не менее H.

    Если рассчитываемое сечение расположено на высоте H 1 над верхней гранью рандбалки, то при определении длины участков s и s 1 следует принимать высоту пояса кладки H 01 = Н 0 + Н 1 .

    Расчетную площадь сечения А при расчете висячих стен на местное сжатие следует принимать: в зоне, расположенной над промежуточными опорами неразрезных рандбалок, как для кладки, загруженной местной нагрузкой в средней части сечения; в зоне над опорами однопролетных рандбалок или крайними опорами неразрезных рандбалок, а также при расчете кладки, под опорами рандбалок как для кладки, загруженной на краю селения.

    6.52. Эпюру распределения давления в кладке висячих стен при наличии проемов следует принимать по трапеции, причем площадь треугольника, который отнимается от эпюры давления в пределах проема, заменяется равновеликой площадью параллелограмма, добавляемой к остальной части эпюры (рис. 16). При расположении проемов на высоте H 1 над рандбалкой длина участка s соответственно увеличивается (см, п. 6.51).

    Рис. 16. Эпюра распределения давления в кладке висячих стен при наличии проема

    6.53. Расчет рандбалок должен производиться на два случая загружения:

    а) на нагрузки, действующие в период возведения стен. При кладке стен из кирпича, керамических камней или обыкновенных бетонных камней должна приниматься нагрузка от собственного веса неотвердевшей кладки высотой, равной 1/3 пролета, для кладки в летних условиях и целому пролету - для кладки в зимних условиях (в стадии оттаивания при выполнении кладки способом замораживания, см. п. 7.1).

    При кладке стен из крупных блоков (бетонных или кирпичных) высоту пояса кладки, на нагрузку от которого должны быть рассчитаны рандбалки, следует принимать равной 1/2 пролета, но не менее высоты одного ряда блоков. При наличии проемов и высоте пояса кладки от верха рандбалок до подоконников менее 1/3 пролета следует учитывать также вес кладки стен до верхней грани железобетонных или стальных перемычек (рис. 17). При рядовых, клинчатых и арочных перемычках должен учитываться вес кладки стен до отметки, превышающей отметку верха проема на 1/3 его ширины;

    Рис. 17. Схема нагрузки на рандбалку при наличии проема в стене

    железобетонная перемычка

    б) на нагрузки, действующие в законченном здании. Эти нагрузки следует определять, исходя из приведенных выше эпюр давлений, передающихся на балки от опор и поддерживаемых балками стен.

    Количество и расположение арматуры в балках устанавливают по максимальным величинам изгибающих моментов и поперечных сил, определенных по двум указанным выше случаям расчета.

    КАРНИЗЫ И ПАРАПЕТЫ

    6.54. Расчет верхних участков стен в сечении, расположенном непосредственно под карнизами, производится для двух стадий готовности здания:

    а) для незаконченного здания, когда отсутствуют крыша и чердачное перекрытие;

    б) для законченного здания.

    6.55. При расчете стены под карнизом для незаконченного здания должны учитываться следующие нагрузки:

    а) расчетная нагрузка от собственного веса карниза и опалубки (для монолитных железобетонных и армированных каменных карнизов), если она поддерживается консолями или подкосами, укрепленными в кладке;

    б) временная расчетная нагрузка по краю карниза 100 кг на 1 м карниза или на один элемент сборного карниза, если он имеет длину менее 1 м;

    Примечания. 1. Если по проекту концы анкеров, обеспечивающих устойчивость карниза, заделываются под чердачным перекрытием, то при расчете должно учитываться наличие чердачного перекрытия (полностью или частично);

    2. Расчетом должна быть также проверена устойчивость карниза при неотвердевшей кладке.

    6.56. Карнизы и участки стен под карнизами законченных зданий должны быть рассчитаны на следующие нагрузки:

    а) вес всех элементов здания, как создающих опрокидывающий момент относительно наружной грани стены, так и повышающих устойчивость стены, при этом вес крыши принимается уменьшенным на величину отсоса от ветровой нагрузки;

    б) расчетная нагрузка на край карниза 150 кг на 1 м или на один элемент сборного карниза длиной менее 1 м;

    в) половина расчетной метровой нагрузки.

    Примечание. Снеговая нагрузка при расчете карнизов не учитывается.

    6.57. Общий вынос карниза, образованного напуском рядов кладки, не должен превышать половины толщины стены. При этом вынос каждого ряда не должен превышать 1/3 длины камня или кирпича.

    6.58. Для кладки карнизов с выносом менее половины толщины стены и не более 20 см применяются те же растворы, что и для кладки верхнего этажа. При большем выносе кирпичных карнизов марка раствора для кладки должна быть не ниже 50.

    6.59. Карнизы и парапеты при недостаточной их устойчивости должны закрепляться анкерами, заделываемыми в нижних участках кладки.

    Расстояние между анкерами не должно превышать 2 м, если концы анкеров закрепляются отдельными шайбами. При закреплении концов анкеров за балку или за концы прогонов расстояние между анкерами может быть увеличено до 4 м. Заделка анкеров должна располагаться не менее чем на 15 см ниже того сечения, где они требуются по расчету.

    При железобетонных чердачных перекрытиях концы анкеров следует заделывать под ними.

    При сборных карнизах из железобетонных элементов в процессе возведения должна быть обеспечена устойчивость каждого элемента.

    6.60. Анкеры должны располагаться, как правило, в кладке на расстоянии в 1/2 кирпича от внутренней поверхности стены. Анкеры, расположенные снаружи кладки, должны быть защищены слоем цементной штукатурки толщиной 3 см (от поверхности анкера).

    При кладке на растворах марки 10 и ниже анкеры должны закладываться в борозды с последующей заделкой их бетоном.

    6.61. Сечение анкера допускается определять по усилию, определяемому по формуле

    где М - наибольший изгибающий момент от расчетных нагрузок;

    h 0 - расстояние от сжатого края сечения стены до оси анкера (расчетная высота сечения).

    6.62. Кладка стен под карнизами проверяется на внецентренное сжатие. При отсутствии анкеров, а также при наличии анкеров в сечении на уровне их заделки эксцентриситеты более 0,7у не допускаются.

    Во всех случаях должны быть проверены расчетом все узлы передачи усилий (места заделки анкеров, анкерных балок и т.п.).

    6.63. Парапеты следует рассчитывать в нижнем сечении на внецентренное сжатие при действии нагрузок от собственного веса и расчетной ветровой нагрузки, принимаемой с аэродинамическим коэффициентом 1,4. При отсутствии анкеров эксцентриситеты более 0,7у не допускаются.

    6.64. Нагрузки, повышающие устойчивость карнизов и парапетов, принимаются с коэффициентом 0,9.

    ФУНДАМЕНТЫ И СТЕНЫ ПОДВАЛОВ

    6.65. Фундаменты, стены подвалов и цоколи следует преимущественно проектировать сборными из крупных бетонных блоков. Допускается также применение мелких бетонных блоков и камней, природных камней правильной и неправильной формы, монолитного бетона и бутобетона, хорошо обожженного глиняного кирпича пластического прессования. Расчетные сопротивления кладки ленточных фундаментов и стен подвалов, выполняемых из крупных бетонных блоков, принимаются по п. 3.3.

    При расчете стены подвала или фундаментной стены в случае, когда толщина ее меньше толщины стены, расположенной непосредственно над ней, следует учитывать случайный эксцентриситет е = 4 см, величина этого эксцентриситета должна суммироваться с величиной эксцентриситета равнодействующей продольных сил. Толщина стены первого этажа не должна превышать толщину фундаментной стены более чем на 20 см. Участок стены первого этажа, расположенный непосредственно над обрезом, должен быть армирован сетками (см. п. 6.34).

    6.66. Переход от одной глубины заложения фундамента к другой следует производить уступами. При плотных грунтах отношение высоты уступа к его длине должно быть не более 1: 1 и высота уступа - не более 1 м. При неплотных грунтах отношение высоты уступа к его длине должно быть не более 1: 2 и высота уступа - не более 0,5 м.

    Уширение бутобетонных и бутовых фундаментов к подошве производится уступами. Высота уступа принимается для бутобетона не менее 30 см, а для бутовой кладки - в два ряда кладки (35 - 60 см). Минимальные отношения высоты уступов к их ширине для бутобетонных и бутовых фундаментов должны быть не менее указанных в табл. 31.

    Таблица 31

    6.67. В фундаментах и стенах подвалов:

    а) из бутобетона толщина стен принимается не менее 35 см и размеры сечения столбов не менее 40 см;

    б) из бутовой кладки толщина стен принимается не менее 50 см и размеры сечения столбов не менее 60 см.

    6.68. Наружные стены подвалов должны быть рассчитаны с учетом бокового давления грунта и нагрузки, находящейся на поверхности земли. При отсутствии специальных требований нормативную нагрузку на поверхности земли следует принимать равной 1000 кг/м 2 . Стены подвалов следует рассчитывать как балки с двумя неподвижными шарнирными опорами.

    ← Вернуться

    ×
    Вступай в сообщество «page-electric.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «page-electric.ru»