Генетическое разнообразие человечества. Расовые различия. Генетическое биоразнообразие Генетическое разнообразие особей увеличивается при

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Уровни биоразнообразия.

Каждый биологический вид неповторим и содержит информацию о развитии живого организма (растительного, животного и др.), которая имеет огромное научное и прикладное значение.

Генетическое разнообразие – это разнообразие геномов живых организмов, т.е. генетических вариаций. Разнообразие живых организмов на этом уровне определяется свойствами биологических макромолекул, особенно нуклеиновых кислот ДНК и РНК. Каждый вид обладает определенным количеством генетической информации: ДНК бактерий составляет 1000 генов; высших растений – 400000; животных – 100000. Поэтому каждая форма жизни уникальна и вымирание одного дикого вида означает потерю от тысячи до сотен тысяч видов генов с неизвестными потенциальными свойствами.

Одной из причин сокращение видового разнообразия является нерациональное использование биологических ресурсов, при котором нарушаются внутренние естественные механизмы воспроизводства животных и растений в последовательных поколениях, поддерживающие равновесие с окружающей средой. Поэтому сохранение генетического разнообразия популяций живых организмов, а также сельскохозяйственных животных и сортов растений является одной из актуальных проблем биологии.

Популяции животных и растений – это основной объект хозяйственной деятельности человека, поэтому если мы хотим рационально использовать биологические ресурсы суши и моря, то должны понимать процессы, протекающие в популяциях и прогнозировать, к каким последствиям может привести вмешательство человека в существование этих популяций.

Биологические особенности популяций живых организмов являются производными их наследственных способностей, т.е. их генофондов. Генофонд – это совокупная наследственная информация, которая передается от родителей к потомкам.

В популяциях видов живых организмов, которые размножаются половым путем, генофонд слагается из всего разнообразия генов и аллелей, имеющихся в популяции. В каждой данной популяции состав генофонда из поколения в поколения может постоянно изменяться. Новые сочетания генов образуют уникальные генотипы, которые приводят к генетическому разнообразию популяций. Основой для генетического разнообразия является генотипической изменчивость (гетерозиготность, полиморфизм и др.), которая способствует адаптации организмов к условиям окружающей среды и выживанию видов. Популяции, генофонд которых непрерывно изменяется из поколения в поколение, претерпевают эволюционные изменения и приводят к образованию новых видов и увеличению биоразнообразия живых организмов. Значение генетических вариаций заключается в том, что они являются основой для эволюционных изменений.


Статичный генофонд отражает отсутствие генетической изменчивости среди особей данного вида и отсутствие эволюционных изменений.

Появление новых генетических вариаций у живых организмов связано с тем, что нуклеиновые кислоты обладают способностью к спонтанным изменениям структуры при воздействии различных факторов среды. Это приводит к трансформации геномов живых организмов – наследственной изменчивости. На этом уровне разнообразие создается в результате действия трех независимых процессов:

Спонтанно возникающих генетических вариаций – мутаций.

Действия естественного отбора в смешанных популяциях.

Географической и репродуктивной изоляции.

В природе новые генетические вариации возникают у особей через генные и хромосомные мутации, а у организмов, которым свойственно половое размножение, новые генетические вариации возникают через рекомбинацию генов.

Новые генетические вариации могут также создаваться посредством селекции живых организмов при использовании методов генной инженерии.

По оценкам ученых к 2015 году биосфера может утратить 10-15% составляющих ее видов. Поэтому генофонд нашей планеты подлежит строгой охране. Для этого необходимо:

1. Сохранение генетического разнообразия существующих популяций живых организмов в процессе их хозяйственного использования (неистощительное природопользование).

2. Восстановление тех популяций живых организмов, чья структура была нарушена.

3. Создание новых систем популяций в тех регионах, где существуют необходимые естественные и экономические условия.

PAGE 1

Лекция 2

Генетическое разнообразие

Это многообразие (или генетическая изменчивость) внутри вида;

Это различие между популяциями в пределах одного вида

От уровня генетического разнообразия зависят адаптационные способности популяции при изменениях окружающей среды, вообще ее жизнеспособность.

популяция

Термин (от лат. populus – народ, население) был введен датским генетиком Вильгельмом Иоганнсеном в 1903 г.

В настоящее время понятие популяция используют для обозначения самовозобновляющейся группы особей вида, которая на протяжении длительного времени занимает определенное пространство и характеризуется обменом генов между особями, в результате которого формируется общая генетическая система, отличная от генетической системы другой популяции того же ви да.

Т.Е. для популяции должны быть характерна панмиксия - (от греч. pan – все, mixis – смешивание) – свободное скрещивание разнополых особей с разными генотипами.

Совокупность генов, которые имеются у особей одной популяции (генофонд популяции) или всех популяций вида (генофонд вида) называют ГЕНОФОНДОМ.

Первичные механизмы возникновения генетического разнообразия

Как известно, генетическое разнообразие определяется варьированием последовательностей 4 комплементарных нуклеотидов в нуклеиновых кислотах, составляющих генетический код . Каждый вид несет в себе огромное количество генетической информации: ДНК бактерии содержит около 1 000 генов, грибы – до 10 000, высшие растения – до 400 000. Огромно количество генов у многих цветковых растений и высших таксонов животных. Например, ДНК человека содержит более 30 тыс. генов. Всего в живых организмах Земли содержится 10 9 различных генов.

Поток генов

Степень изоляции популяций одного вида зависит от расстояния между ними и потока генов. Потоком генов называют обмен генами между особями одной популяции или между популяциями одного вида . Поток генов внутри популяции происходит в результате случайного скрещивания между особями, генотипы которых отличаются хотя бы по одному гену.

Очевидно, что скорость потока генов зависит от расстояния между половыми особями .

П поток генов между популяциями зависит от случайных миграций особей на дальние расстояния (например, при переносе семян птицами на дальние расстояния).

Поток генов внутри популяции всегда больше потока генов между популяциями одного вида. Далеко отстоящие друг от друга популяции практически полностью изолированы.

Для описания генетического разнообразия используют следующие показатели:

  • доля полиморфных генов;
  • частоты аллелей полиморфных генов;
  • средняя гетерозиготность по полиморфным генам;
  • частоты генотипов.

Частоты аллелей полиморфных генов

Особи одной популяции обычно отличаются генотипами, то разные аллели представлены в генофонде популяции разным числом особей (т.е. имеет разную частоту в популяции. Например, у человека частота доминантного аллеля нормальной пигментации кожи, глаз и волос равна 0,99 или 99%. При этом рецессивный аллель альбинизма (отсутствие пигментации) встречается с частотой 0,01 или 1%.

В 1908 г. английский математик Дж. Харди и немецкий врач В. Вайнберг независимо друг от друга предложили математическую модель, для вычисления частоты аллелей и генотипов в популяции.

Вспомним, что у гетерозигот Аа формируется 2 типа гамет:

гаметы

АА

Аа

аА

аа

Потомки скрещивания гетерозиготных особей будут как гомозиготными, так и гетерозиготными.

Теперь посмотрим, что будет происходить в популяции при скрещивании особей, если известно, что частота встречаемости аллели “ А” составляет p , а аллели “ а” q .

Частоты гамет

p (А )

q (a)

p (А )

P 2 (АА )

pq Аа

q (a)

pq (аА )

q 2 (аа )

Поскольку сумма частот доминантного и рецессивного аллелей = 1, то

Частоты аллелей можно вычислить по формуле p + q =1

А частоты генотипов по p 2 + 2 pq + q 2 = (p + q ) 2 = 1

Во втором поколении доля гамет «А» = p 2 + (2 pq )/2 = p (p + q ) = p ,

а доля гамет «а» = q 2 + (2 pq )/2 = q (p + q ) = q

Закон Харди-Вайнберга:

Частоты доминатного и рецессивного аллелей в популяции будут оставаться постоянными из поколения в поколение при наличии определенных условий.

1. панмиктичная менделеевская популяция (панмиктичная – равновероятно скрещивание любых особей разных полов); (менделевская – наследование признаков по законам Менделя)

2. нет новых мутаций

3. все генотипы одинаково плодовиты, т.е нет естественного отбора

4. Полная изоляция популяции (нет обмена генами с другими популяциями).

Следствие закона Харди-Вайнберга:

1. Значительная доля имеющихся в популяции рецессивных аллелей находиться в гетерозиготном состоянии. Эти гетерозиготные генотипы являются потенциальным источником генетической изменчивости популяции.

Многие рецессивные аллели (которые проявляются в фенотипе только гомозиготном состоянии) неблагоприятны для фенотипа. Поскольку частота гомозиготных фенотипов с рецессивными аллелями не велика в популяции, то в каждом поколении из популяции элиминируется небольшая часть рецессивных аллелей.

2. Концентрация аллелей и генотипов в популяции может изменяться под воздействием внешних по отношению к популяции факторов: рекомбинации генов при половом размножении (комбинаторная изменчивость), мутаций, популяционных волн, неслучайного скрещивания, дрейфа генов, потока генов и естественного отбора фенотипов.

Рекомбинация генов

Основные источники образования новых генотипов – рекомбинация генов.

Источники генетической рекомбинации –

1) независимое расхождение гомологичных хромосом в анафазе 1 деления мейоза;

2) случайное сочетание хромосом (и гамет) при оплодотворении;

3) кроссинговер) обмен участками гомологичных хромосом в профазе 1 деления мейоза

Все эти процессы могут приводят к формированию новых генотипов и как следствие к изменению частот генотипов. Но они не приводят к образованию новых аллелей и, следовательно, не влияют на изменения частот аллелей в популяции.

Возникновение мутаций

Новые аллели в результате мутаций редко, но постоянно появляются в природе, поскольку существует множество особей каждого вида и множество локусов в генотипе любого организма возникают.

Мутационный процесс служит источником появления новых мутантных аллелей и перестроек генетического материала. Мы помним, что единичная мутация – редкое событие. Возрастание их частоты в популяции под действием мутационного давления происходит крайне медленно, даже в эволюционном масштабе. К тому же подавляющее большинство возникающих мутаций устраняются из популяции в течение немногих поколений уже в силу случайных причин.

Для человека и других многоклеточных показано, что мутации обычно возникают с частотой от 1 на 100 000 до 1 на 1 000 000 гамет.

При этом процесс возникновения мутаций в естественных условиях непрерывен. Поэтому в природных популяциях разных организмов насчитывается от нескольких процентов до десятков процентов особей несущих мутации. Если такие особи скрещиваются с другими особями, то в результате генетической перекомбинации возникают новые сочетания аллелей.

Новые мутации так или иначе нарушают сложившийся генотип организма; многие из них являются летальными, полулетальными или стерильными . При половом размножении значительная часть мутаций переводиться в гетерозиготное состояние. Это так называемый генетический груз популяции – ее плата за возможность сохранять генетическое разнообразие для последующего образования новых фенотипов, которые могут оказаться более приспособленными к изменившимся условиям среды.

На зиготу с среднем приходится 3-5 вредных летальных мутаций в гетерозиготном состоянии. При наличии неблагоприятных аллелей и их сочетаний примерно зиготы не участвуют в передаче генов следующему поколению. Подсчитано, что в популяции человека коло 15% зачатых организмов гибнет до рождения, 3 — при рождении, 2 — непосредственно после рождения, 3 — умирает, не достигнув половой зрелости, 20 — не вступают в брак, 10% браков бездетны.

Мутации, которые могут привести к гибели организма или его ослаблению в гомозиготном состоянии, в гетерозиготном состоянии не проявляют своего негативного влияния на развитие организма и даже могут положительно влиять на жизнеспособность особей (например, мутация серповидно-клеточной анемии в гетерозиготном состоянии уменьшает восприимчивость к малярии).

Особо отметим, что в разных экологических условиях одна и та же мутация может по-разному влиять на жизнеспособность организма. Французский генетик Ж. Тесье провел эксперимент с мухами, имеющими редуцированные крылья. Он содержал бескрылых мух вместе с крылатыми в открытых ящиках на берегу моря и в закрытом помещении. Через два месяца число бескрылых мух в первом ящике на берегу моря возросло с 2,5 до 67%, а во втором бескрылые мухи исчезли.

Т.о. мутации – это случайные и ненаправленные изменения генофонда, которые являются поставщиком генетической изменчивости популяции и существуя в гетерозиготном состоянии представляют потенциальный резерв для естественного отбора.

ПОТОК генов из других популяций

Иммиграция особей в новую популяцию скорее часто влечет за собой появление в генофонде этой популяции новых аллелей.

При однонаправленном потоке может происходить существенные изменения генофонда популяции

При равномерном потоке генов (взаимный обмен генами) происходит выравнивание частот генов в обеих популяциях. Такой равномерный поток генов объединяет все популяции в единую генетическую систему, которая называется видом.

Колебания численности популяции

Колебания численности особей в популяциях характерны для всех живых организмов – при изменении среды обитания. В упрощенном виде: ухудшение условий вызывает гибель части особей, улучшение сопровождается ростом численности особей. Такие колебания численности обычно волнообразный характер. Например, у многих грызунов увеличение доступной пищи вызывает рост численности популяции до критических отметок. В результате возрастает агрессивность грызунов по отношению друг к другу; у самок возникают гормональные расстройства, ведущие к рассасыванию эмбрионов и, как следствие, к падению рождаемости.

Очевидно, что при падении численности из популяции вместе с отмирающими особями исчезает часть аллелей . Впервые на генетические последствия изменения численности особей обратил внимание русский генетик С.С. Четвериков. Он предложил назвать периодические изменения плотности популяций « популяционными волнами» или «волнами жизни ».

Дрейф генов

В популяциях с небольшой численностью половозрелых особей случайное скрещивание может быстро привести к увеличению частоты редкого аллеля либо к его исчезновению и как следствие к уменьшению генетического разнообразия. Впервые это явление было открыто в 1931 г русскими генетиками Ромашовым и Дубининым. Независимо от них -американским генетиком С. Райтом, который и назвал его дрейф генов . Опыт Райта: в пробирки с кормом по 2 самки и 2 самца дрозофилы гетерозиготных по гену А (частота обоих аллелей = 0,5). Через 16 поколений в части популяций остались оба аллеля, в других только аллель «А», а в третьих - только аллель «а». Т.о. в популяциях наблюдалась быстрая утрата одного из аллелей или изменение частоты одного из аллелей.

Неслучайное скрещивание

Закон Харди-Вайнберга соблюдается только при панмиксии - равновероятном скрещивании особей с разными генотипами в одной популяции. В природных популяциях панмиксия никогда не бывает полной. Например, у энтомофильных растений, насекомые чаще посещают более крупные или яркие цветки с большим количеством нектара или пыльцы.

Ассортативное скрещивание: партнеры одной популяции выбирают друг друга по фенотипу. Например, в популяциях многих жуков крупные особи спариваются только с крупными, мелкие с мелкими.

Инбридинг – близкородственное скрещивание. Возможен при образовании жестко изолированных семейных групп, в которые не допускаются чужаки. Доминирующий в такой группе самец спаривается со всеми самками, включая и собственных дочерей. Такой тип скрещивания приводит к гомозиготации генотипов и уменьшению генетического разнообразия популяции (см. также гемофилия в правящих династиях Европы и России).

Селективное скрещивание – преимущественное размножение особей, имеющих определенные признаки (например, более активно ухаживающие за самкой). Например, в популяциях кур, сорок и др. в размножении участвуют от 10 до 40% всех самцов.

В целом неслучайное скрещивание ведет к понижению генетического разнообразия популяции.

Т.о. природные популяции организмов находятся под постоянным воздействием многих факторов, определяющих их генетическое разнообразие:

1. Мутации.

2. Популяционные волны.

3. Неслучайное скрещивание.

4. Дрейф генов.

5. Поток генов.

6. Естественный отбор фенотипов

На генетическое разнообразие в искусственных популяциях (сортах растений, породах животных, штаммах микроорганизмах) существенное влияние имеет целенаправленная деятельность человека – СЕЛЕКЦИЯ.

Человек отбирает признаки, не всегда нужные и полезные для существования вида (популяции), но зато приносящие пользу человеку (см. , например, мясные, молочные породы коров, карликовые коровы, кенийские коровы).

ГОРИЗОНТАЛЬНЫЙ ПЕРЕНОС ГЕНОВ

см. также необыкновенно интересную статью

А. В. Марков

Горизонтальный перенос генов и эволюция

http://warrax.net/94/10/gorizont.html

http://macroevolution.narod.ru/lgt2008/lgt2008.htm

Пожалуй, самый на сегодняшний день любопытный и не до конца понятный фактор, который тоже может влиять на генетическое разнообразие – это так называемый горизонтальный перенос генов.

Сегодняшние данные позволяют утверждать, что в ходе эволюции происходили генные переносы как внутри царств, так и между ними.

Так, например, у кишечной палочки 4289 генов. Из них 755 (т.е. 18%) – перенесенные.

  • В среднем у бактерий доля полученных генов составляет 10-15%. По последним данным, может быть и больше.
  • Наибольшее количество переносов характерно для свободноживущих бактерий с широкими экологическими ареалами.
  • Наименьшее число переносов обнаружено у патогенных бактерий, живущих в узких экологических нишах.
  • Чаще всего в горизонтальном переносе участвуют гены, связанные с метаболизмом, транспортными путями и передачей сигналов.
  • Горизонтальная передача генов реализуется через различные каналы генетической коммуникации - процессы коньюгации, трансдукции, трансформации и др.
  • Близкородственные микробы обмениваются генами намного чаще, чем филогенетически удаленные.

Итак, подведем итог. Генетическое разнообразие зависит от:

– доли полиморфных генов – генов, имеющих несколько аллелей (группы крови человека А, В, О);

– частоты аллелей для полиморфных генов;

– средняя гетерозиготность по полиморфным генам;

– частоты генотипов;

– миграционных процессов;

– интенсивности мутационного процесса;

– действия естественного отбора;

– длительности эволюции;

Размера популяции (в маленьких много случайных процессов);

Сцепления генов (при естественном отборе будет сохраняться не только селектируемый аллель А, но и сцепленные с ним нейтральные гены)

– горизонтального переноса генов;

– человеческого участия (например, при селекционных работах).

Этот подраздел посвящен биополитическим аспектам генетического разнообразия человечества. Данная проблема может быть рассмотрена в контексте генетического многообразия биоса в целом (ср. выше 3.2.). Известно, что всякая внутренне гетерогенная система обладает дополнительным резервом устойчивости. Поэтому биополитик В.Т. Эндерсон присоединил свой голос ко всем протестующим против выращивания немногих или – что еще хуже – одного какого-нибудь сорта сельскохозяйственных растений в масштабе планеты (Anderson, 1987). Увлечение культивированием совпадающих по генотипу, хотя и продаваемых под разными сортовыми этикетками, сортами кукурузы Эндерсон считал одной из причин того, почему среди растений кукурузы не оказалось достаточно устойчивых к поразившим американское сельское хозяйство в 70-е годы болезням. Эрозия (обеднение) генофонда культивируемых растений и домашних животных, обеднение генофонда биосферы в целом – глобальная проблема, решение которой включает и политические средства. Необходимо разработать международное законодательство по созданию банков генов (например, в виде образцов семян растений разных сортов и видов), по мерам против монополии Запада на хранение, патентование, продажу на интернациональном рынке сортов растений и пород животных и защите прав стран «Третьего мира», где наиболее богат растительный и животный генофонд.

Составной частью многообразного и в то же время внутренне единого биоса («тела биоса» по словам Президента Биополитической Интернациональной Организации А. Влавианос-Арванитис) является человечество, гетерогенное генетически и многообразное фенотипически – по внешности и физиологическим, психологическим, поведенческим особенностям. Именно через многообразие индивидуальных вариантов проявляется единство человечества как составной части планетарного «тела биоса». Известно, что человечество, как и любая система, выигрывает в устойчивости за счет разнообразия, в том числе генетического. Даже признаки, вызывающие отрицательные последствия при данных условиях, могут принести пользу в. изменившейся ситуации. Разнообразие генофондов способствует выживанию социума.

Это можно продемонстрировать на примере серповидноклеточной анемии - наследственной болезни человека, вызванной точковой мутацией (заменой одной пары оснований в ДНК). Мутантный ген кодирует дефектные полипептидные цепи гемолобина - белка крови, транспортирующего кислород. Как указано выше, гены представлены в организме двумя копиями. Если оба гемоглобиновых гена являются мутантными, наступает тяжелая, часто смертельная форма серповидноклеточной анемии, обусловленная недостаточным поступлением кислорода. Однако индивид со смешанными генами (одна нормальная и одна мутантная копия) имеет достаточно нормального гемоглобина для того, чтобы выжить и, помимо этого, имеет то преимущество, что он более устойчив к тропической малярии , чем индивид без данной мутации. Поэтому, в тех регионах мира, где малярия широко распространена, эта мутация. может быть рассмотрена как полезная, и по этой причине она может распространяться в популяции.

Однако факт генетического разнообразия человечества вызывает к себе двойственное отношение. Далеко не все разделяют светлое, радужное представление о том, что «каждый /человеческий индивид/ прекрасен,… многообразие чудесно». (эти строки написаны Ф. Раштоном с сарказмом). Чем не устраивает людей генетическое разнообразие? Какие биополитические проблемы оно порождает? Рассмотрим эти проблемы.

6.3.1. Индивидуальные вариации. Миф о генетической общности наций. Высокая степень генетического полиморфизма человека на индивидуальном уровне касается различных категорий его признаков – от цвета волос и глаз до биохимических факторов и поведенческих характеристик (в той мере, в которой последние закреплены генетически, см. выше). Хорошей иллюстрацией полиморфизма генов может служить многообразие систем тканевой совместимости (гистосовместимости) HL-A , которые в целом допускают свыше полутора миллионов вариантов (Хрисанфова, Перевозчиков, 1999).

До сих пор дискуссионным остается вопрос, в какой степени взаимное притяжение людей (дружба, вступление в брак, сотрудничество в одной политической организации и т.д.) продиктовано подсознательно оцененным сходством систем тканевой совместимости или других генетически детерминированных параметров. Подобны ли мы мышам, у которых системы тканевой совместимости сходны у особей одной биосоциальной системы и различаются у особей из разных таких систем?. Филипп Раштон настаивает на важной роли сходных генов при выборе друга, супруга, партнера, более того, считает его одним из основных механизмов формирования этносов (племен, наций и др.); другие авторы оспаривают важность этих факторов, считая, что, например, нация – результат «фиктивного родства» (Masters, 1998), общего для группы людей заблуждения относительно своего происхождения (Anderson, 1987), а национальное самосознание – плод политического индоктринирования людей (см. раздел 5). Действительно, множество генетических данных свидетельствует о весьма значительной гетерогенности большинства наций, что не позволяет говорить о существенной «генетической общности» их представителей. Это находится в соответствии и с данными фенотипических исследований – изучения антропологических типов, сосуществующих внутри каждой нации.

6.3.2. Генетические аномалии. В связи с индивидуальным генетическим разнообразием возникают проблемы с политическими и этическими гранями, касающиеся так называемых «генетических аномалий» и соответственно понятия «нормы». Например, какие из индивидуальных генетических особенностей общество должно лечить, устранять? В предшествующем подразделе мы уже говорили о субклинических, социально адаптируемых, формах шизофрении и маниакально-депрессивного психоза. Являются ли они пусть «стертой», но все же патологией (и тогда может быть поставлен вопросм об ограничении деторождения, лечебных мероприятиях и др.) или это все еще приемлемые варианты психики, поведения, более того, несущие ряд социально ценных качеств. Не секрет, что многие таланты и тем более гении имели явные психические «аномалии», что, например, позволяло им усматривать связи между вещами, недоступные «среднему обывателю». Один из тестов на предрасположение к шизофрении как раз и основан на способности группировать предметы по не заметным для «нормальных людей» свойствам!

Некоторые аномалии, несомненно, вызывают серьезные последствия для здоровья и самой жизни индивида, как например прогерия – преждевременное старение, наступающее уже у 8-10-летних детей! Однако в ряде других случаев само понятие «генетическая аномалия» вызывает серьезные проблемы. Прежде чем определить «отклонение от нормы», надо определить понятие «нормы», что является весьма проблематичным. Как показывает приведенный выше пример с серповидноклеточной анемией, даже явно вредные аномальные признаки могут оказаться полезными в определенных условиях (серповидноклеточная анемия - при распространенности тропической малярии). А как быть с не вызывающими медицинских проблем «аномалиями», такими как полидактилия (6-7 пальцев на руках и ногах), которые могут вызывать социальное отторжение как «уродства» или рассматриваться позитивно, как «интересная особенность» индивида? Ведь шестипалые (и тем более семипалые) индивиды могут брать аккорды из 12 или 14 нот, недоступные обычным людям и, быть может, освоить особые, пригодные только для них клавиатуры компьютеров или системы оружия с большим количество кнопок. Не являются ли шестипалые особым меньшинством, которое в демократических странах типа США может заявлять свои политические права (как лесбиянки или инвалиды)! Не решат ли многопалые (да и не только они), что представляют собой эволюционно-прогрессивную форму, по отношению к которой мы – что-то типа архантропов? И кто вправе оспорить подобное решение? Подобные проблемы неизбежно встают на пути евгеники, см. след. подраздел).

Подчеркнем еще раз, что индивидуальное разнообразие лишь частично определяется генетическим полиморфизмом. В весьма значительной степени люди различны «внешне и внутренне» в силу дифференцирующего воздействия на них факторов среды . Даже братья (в том числе генетически идентичные близнецы) в одной семье все же воспитываются не совсем одинаково: к ним несколько по-разному относятся, что обусловливает различия в плане способности к обучению, личностных качеств, патологических отклонений, существующие даже между близнецами.

6.3.3. Евгеника -- совокупность социальных программ по улучшению генетического фонда человечества (от греческих слов: eu –«хороший», genesis – « происхождение») . Английский ученый Френсис Гальтон, основатель евгеники, известен в первую очередь своими трудами «О наследственности таланта» (1864), «Наследственность таланта, его законы и последствия» (1869) и др. Анализ биографий выдающихся людей привел его к выводу о генетической обусловленности способностей и талантов. Им поставлена задача улучшения наследственности человечества путем селекции полезных качеств и устранения вредных, составляющая суть евгеники. Сходные взгляды были изложены в России профессором-медиком В.М. Флоринским (Томский университет) в книге «Усовершенствование и вырождение человеческого рода» (1866). В дальнейшем евгеническое движение получило распространение в разных странах.

В основе евгенических мероприятий лежат методы отбора (селекции). Евгенику подразделяют на позитивную (стимуляция распространения полезных генотипов) и негативную (постановка барьеров на пути распростанения вредных наследственных факторов в социуме). Оба варианта могут разниться по степени жесткости соответствующих мероприятий. Негативная евгеника может проявляться ограничением близкородственных браков и созданием медико-биологических консультационных центров, информирующих людей о нежелательных возможных последствиях тех или иных семейных связей. В более жестком варианте негативная евгеника предполагает ограничение детородной функции людей с нежелательными генами (психические больные, алкоголики, преступники) вплоть до стерилизации. Позитивная евгеника включает в себя создание благоприятных условий для деторождения избранным (благородного происхождения, физически здоровым, красивым, талантливым и так далее) членам общества через материальные и моральные стимулы. Она может пытаться поставить масштабную задачу выведения нового человека путем селекции генотипов, полученных в потомстве людей, которые обладают выдающимися качествами. Негативная евгеника применялась на практике в начале ХХ века в США, Германии, Швеции, Норвегии и других странах в виде законов о стерилизации определенных групп индивидов (например, с патологией в психическом плане).

«Русское Евгеническое Общество», созданное в 1920 г. и включавшее видных ученых-генетиков: Н.К. Кольцова (председатель), А.С. Серебровского, В.В. Бунака и др., отвергло негативную евгенику и занялось позитивной. Выдающийся генетик Герман Меллер, автор письма И.В. Сталину в поддержку позитивной евгеники, ратовал за «крестовый поход» в пользу евгенических мер. Последующее развитие зарубежной и отечественной науки привело к существенному охлаждению интереса к евгенике, что обусловлено и политическими причинами. Евгеника в Германии запятнала себя связями с нацистким режимом, в СССР преследования генетики Т.Д. Лысенко и его сторонниками среди прочих доводов прикрывались и ссылками на бесчеловечный характер евгеники, особенно негативной.

Несмотря на все это, евгенику в наши дни рано «сдавать в музей истории». Она возрождается с получением новых научных данных о реальном вкладе наследственных факторов (не будем однако забывать: этот вклад частичен и его реализация в большой мере зависит от факторов среды, жизненного опыта, см. 6.2.) в те или иные способности, личностные черты, поведенческие особенности, психические аномалии человека. Евгеника оживляется также по мере появления все новых возможностей влиять на генофонд людей путем искусственного оплодотворения, генетической инженерии , а в не столь отдаленной перспективе и клонирования человека. В 60-е годы ХХ века А. Тоффлер в книге «Третья волна» вопрошал, не совершить ли биологическую перестройку людей в соответствии с профессиональными требованиями. В 1968 г. известный генетик Л. Полинг предлагал ввести обязательный контроль всего населения на предмет генетических аномалий. Всех носителей нежелательных генов он предлагал маркировать (например, татуировкой на лбу). В 60-е годы усилиями американского ученого Х. Мюлера создан Банк спермы Нобелевских лауреатов (см. Mendelsohn, 2000). Примерно в те же годы А. Сомит считал «социальную политику в области евгеники» одной из «доставляющих беспокойство проблем, маячивших на горизонте» (Somit, 1972. Р.236).

Беспокойство корифея биополитики не было лишено оснований. В наши дни некоторые влиятельные деятели науки высказываются в поддержку как позитивной, так и негативной евгеники. На страницах сборника «Research in Biopolitics, vol. 5» Э.М. Миллер излагает доводы в защиту евгеники как усилий ради улучшения генофонда популяции. В случае успеха евгеника сулит повышение средней производительности труда рабочих (которые будут обладать выдающимися способностями), снижение общественных затрат на благотворительность и поддержку тех, кто сам не может заработать себе на кусок хлеба, уменьшение количества преступников, ибо преступность «имеет существенную наследственную компоненту». Миллер предлагает конкретные евгенические меры (часть из которых, по его словам, уже практикуется даже в демократических странах): не давать осужденным преступникам свиданий с женами и подругами, чтобы ограничить число детей с «преступными» генами; кастрировать сексуальных насильников, так как их поведение запрограммировано в генах; предлагать беднякам стерилизацию за денежный бонус в размере 5-10 тысяч долларов, ибо качества, приводящие к бедности (в частности, стремление к сегодняшним удовольствиям в ущерб более долгосрочным планам), также связаны с генетическими факторами. Считая оптимальной демографической сиуацией нулевой прирост народонаселения, Миллер ратует за дифференцированное отношение к воспроизводству разных индивидов – наиболее перспективным правительство должно позволять иметь до 3-4 детей, а менее желательным с генетической точки зрения –только одного ребенка или вовсе отговаривать их от детопроизводства (мол, не только в нем радость жизни). Недалеки от евгенических взглядов также причисляющие себя к биополитикам Ф. Солтер и особенно Ф. Раштон. В последние годы новейшие генетические технологии ставят на повестку дня вопрос о возможности «генетического усовершенствования» людей (genetic enhancement) (см. 7.3. ниже).

Какие бы новые данные о частичной генетической детерминации социально важных граней человеческих индивидов ни приводились современными евгениками, они не могут пройти мимо целого ряда серьезных возражений, имеющих как политическое, так и этическое значение:

· Евгенические мероприятия игнорируют зависимость качеств человека от среды, жизненного опыта . Как указано выше, среда задает некоторые различия в характеристиках даже генетически идентичных близнецов. Н.К. Кольцов недаром, кроме евгеники, имел в виду также и «евфенику» – формирование хороших качеств или исправление болезненных проявлений наследственности у человека путем создания соответствующих условий (лекарства, диета, воспитание и др.).

· Возникает вопрос,«под какой стандарт подгонять «улучшенную» породу человека? Под гения, спортсмена, кинозвезду или бизнесмена? А может быть под что-то среднеарифметическое?» Кто должен решать этот вопрос? Если идти по пути евгенизма, то судьи будут назначаться диктаторами, криминальными кланами и очень богатыми организациями. И за этих судей будет идти ожесточенная борьба между партиями и группировками.

· Как уже указано выше, для популяции любого данного вида условием благополучия и приспособляемости к среде является сохранение значительного генетического разнообразия. То же самое справедливо для человеческого общества: его гармоничное и устойчивое функционирование возможно лишь при наличие в нем людей с самыми разными способностями, склонностями и темпераментами. Евгеника при своей реализации угрожает перечеркнуть это природное многообразие, быть может, поделить человечество на генетические устойчивые касты («элита» и «антиэлита», пригодная как пушечное мясо, например).

В свете подобных возражение в современной биополитике более популярно представление о медико-генетическом консультировании в «центрах планирования семьи» , которое не отнимает у личности свободу выбора в связи с созданием семьи и деторождением, но позволяет людям предвидить последствия тех или иных решений, получить информацию о сильных и слабых сторонах своего генотипа. Функция центров планирования семьи заключается в том, чтобы задавать людям вопросы, а не принимать решения за них. Подобные «центры планирования семьи» помогут решить также многие другие биополитические проблемы (см. раздел 7 книги).

6.3.4. Расовые различия как биополитическая проблема. Рассмотрим один из важных в биополитическом отношении примеров генетического разнообразия человечества на уровне групп (субпопуляций). Хорошо известно, что человечество состоит из нескольких рас - экваториальной (негро-австралоидной), евразийской (европеоидной, кавказоидной), азиатско-американской (монголоидной). Это так называемые большие расы; многие классификации подразделяют экваториальную расу на негроидную (африканскую) и австралоидную (аборигены и негритосы), а азиатско-американскую - на монголоидную (в узком смысле - азиатскую) и американскую («индейскую») расы. Есть и еще более дробные классификации. Мы рассмотрим расовые различия с генетической точки зрения.

Имеется генетическое определение расы как большой популяции человеческих индивидов, у которых часть генов общие и которую можно отличить от других рас по общим для нее генам. Известно и то, в какой степени социально и политически значимым является понятие «раса», как часто генетически обусловленные расовые различия служили оправданием той или иной формы расовой дискриминации или концепций евгеники. Данные современной генетики, однако, таковы, что многие исследователи считают само понятие расы (как критерия для классификации) малозначимым.

Трудной и мало благодарной задачей оказалось выявление «общих генов», как этого требует приведенное выше определение расы. Так, если под «общими генами» понимать гены, наличные только у одной какой-либо расы, то этих генов немного, и они недостаточно изучены (примером являются гены, отвечающие за вертикальную складку верхнего века и характерные только для монголоидной расы ). В большинстве исследованных случаев речь идет не об особых генах, присущих только данной расе , а лишь о разных частотах одних и тех же генов у разных рас. Так, ген фермента лактазы , необходимый для усвоения цельного молока, встречается значительно чаще у европеоидов, чем у представителей двух других рас. Из числа признаков с различающимися частотами многие имеют явную зависимость от условий окружающей cреды. Низкое содержание меланина - темного пигмента кожи - у европеоидов и монголоидов по сравнению с экваториальной расой рассматривают ныне как приспособление к условиям северных широт, где солнечное излучение содержит мало ультрафиолетовых лучей, необходимых для синтеза витамина D, а светлая кожа пропускает большую долю ультрафиолета, чем темная.

Важный факт, подрывающий генетическую значимость расовых различий, состоит в том, что внутренние различия между представителями одной расы часто превышают различия между расами. По существующим оценкам, около 85% генетического разнообразия наблюдается внутри каждой из рас, и лишь сравнительно незначительная величина (~15%) приходится на расовые различия. Многие современные генетики человека склоняются к убеждению, что если в случае глобальной катастрофы выживет только одно какое-нибудь племя в лесах Новой Гвинеи, то будут сохранены почти все гены (аллели), встречающихся у 4 млрд. людей, населяющих современную Землю.

В пользу сравнительно малой научной ценности «расы» как понятия говорят и некоторые палеонтологические находки последних десятилетий, подкрепляющие представления о сравнительно недавнем (200-300 тысяч лет назад) появлении вида Homo sapiens в одной географической области в Восточной Африке (гипотеза моноцентризма ). Однако данный вопрос остается дискуссионным, так как имеется и полицентрическая гипотеза происхождения Homo sapiens от разных архантропов (см. выше, подраздел 3.4.).

Антрополог Л.Л. Кавалли-Сфорца получил данные о расовых различиях путем исследова­ния полиморфизма ДНК. На базе данных о частотах аллелей во многих локусах (участках) хромосом у выборок, состоящих из представителей различных рас, был сделан вывод реальном существовании по крайней мере 5 основных субпопуляций в составе человечества – негроидов (Африка), европейцев и сходных с ними групп людей, монголоидов (только Азия), американских индейцев и автралоидов (Австралия, Папуа). По глубине межрасовых различий в частотах аллелей разными авторами построены не вполне совпадающие схемы происхождения рас путем дихотомического ветвления (деления общего ствола, соответствующего древнему человеку, на две ветви, этих ветвей в свою очередь на две более мелкие веточки и др.). Большинство авторов предполагает, что исходно гомогенная человеческая популяция вначале поделилась на негроидов и не-негроидов (на «тропический ствол» и всех остальных в классификации В.В. Бунака); дальнейшие этапы ветвления разнятся у разных авторов. В качестве примера, М. Ней и А.К. Ройчаудхари говорят о дальнейшем разделении не-негроидов на ветви европейцев и не-европейцев (у Кавалли-Сфорца «не-негроиды» дробятся на расы Северной Евразии, где европейцы – уже ветвь второго порядка, и на расы Юго-Восточной Азии); не-европейцы распались на американских индейцев и тех, кто дали начало популяциям монголоидов и австралоидов . Однако полученные данные по частотам аллелей могут быть объяснены не распадом исходной популяции на части, а случайными процессами дрейфа генов, миграций и др., что снижает ценность этих данных как основы для интерпретации различий рас как исторических целостностей.

Объективно существующие расовые различия используются для оправдания порой откровенно неорасистких взглядов . Уже упомянутый Ф. Раштон ссылается на различия между среднестатистическими данными у представителей больших рас (европеоидной, монголоидной и негроидной) в IQ -- коэффициенте интеллектуальности (в среднем 106 у монголоидов, 100 у европеоидов и 85 у негроидов), объеме мозга по отношению к объему тела и др. Все эти данные весьма дискуссионны (например, многие биополитики полагают, что тесты для определения IQ написаны для представителей европейской культуры, а африканцы не глупее, но просто не понимают, чего от них хотят). Данные Раштона о якобы повышенной заболеваемости негроидов в США СПИДом по сравнению с «белыми» не подтверждаются другми биополитиками, в частности, Джеймсом Шубертом.

Наконец, генетическое разнообразие человечества в настоящее время рассматривается все больше не на расовом и вообще групповом, а на сугубо индивидуальном уровне. Уже был отмечен интерес многих биополитиков к различиям между индивидами даже внутри одной семьи, вызванные генетическим разнообразием, дополненным дифференцирующим влиянием микроcреды.

Итак, одно из основных исследовательских направлений биополитики изучает вопрос о влиянии физиологического (соматического) состояния на политическую деятельность индивидов и групп людей. Одна из «фокальных точек» данного направления – роль генетических факторов в политическом поведении. Для многих поведенческих особенностей и аномалий человека характерен умеренный вклад генетических факторов, т.е. они формируются под комбинированным влиянием генетических факторов и факторов внешней среды. Вклад генетики в биополитику связан также с изучением генетического разнообразия человечества. Многие генетические данные указывают на значительную гетерогенность большинства современных наций, так что нация представляется результатом «фиктивного родства», общего для группы людей заблуждения относительно своего происхождения. Дискуссионным остается вопрос о степени важности расовых различий между людьми, однако многие факты свидетельствуют в пользу преобладания индивидуальных вариаций над расовыми в человеческой популяции. Системы мероприятий по стимулированию распространения в популяции людей «благоприятных» генов (позитивная евгеника) и элиминации (выбраковке) «неблагоприятных» (негативная евгеника) -- вызывает существенные возражения, так как игнорирует вклад факторов среды, оставляет принципиально не разрешимым вопрос о критериях и авторитетах в деле «стимуляции» и «выбраковки», а также грозит снизить генетическое разнообразие человечества, представляющее значительную ценность и резерв устойчивости человеческой популяции.

Естественный отбор также называют выживанием наиболее приспособленного . Это явление действительно наблюдается в природе и поддаётся проверке, но одним из механизмов, отвечающих за "биологическую эволюцию ", его считают несправедливо. Наследственные черты можно обнаружить в пределах популяции в различных формах, и их различие обеспечивает отдельным её представителям различные шансы на успех. Если та и иная наследственная черта обеспечивает организму преимущество в текущих условиях, соответствующие гены передаются последующих поколениям чаще, а в обратной ситуации - реже. Это и называют "естественным отбором" наследственной черты.

Общими свойствами естественного отбора являются:

  • Ограниченность : Отбор может происходить только среди имеющихся наследственных черт, а новые при этом не появляются;
  • Быстрота : Данный процесс позводяет виду приспособиться к новым условиям среды в течение нескольких поколений;
  • Увеличение специализации : Приспособление организмов к определённой среде - нише ;
  • Уменьшение разнообразия : Наследственные черты, мешающие в данных условиях (хотя и способные дать преимущество в иных условиях), теряются, делая генофонд беднее, хотя и узкоприспособленным к текущим условиям.

Естественный отбор и генетическое разнообразие

Естественный отбор не вызывает появления новых наследственных черт, а лишь способствует увеличению распространённости уже имеющихся, дающих преимущество в текущих условиях, и уменьшению распространённости мешающих, также уже имеющихся.

Иными словами, естественный отбор является по сути инбридингом генов , оказавшихся "в почёте", что уменьшает разнообразие генетической информации в пределах популяции, а также (при отсутствии какого-либо иного источника генетического разнообразия, опережающего естественный отбор) вызывает появление чистой породы или генетической гомозиготы для данной наследственной черты. В результате организмы со временем оказываются хорошо приспособленными к среде, а опасным мутациям не позволяется распространяться в пределах популяции. Факт естественного отбора признают как креационисты, так и эволюционисты. Приспособление организмов к условиям исследователи наблюдали многократно, и роль естественного отбора в этом процессе несомненна и не может являться предметом спора. А последним является другое - каков источник генетической информации, каковы действующие в клетках механизмы, ответственные за поддержание и создание генетического разнообразия. С точки зрения креационизма, это результат разумного замысла , как прямой (по причине Сотворения мира), так и косвенный (вследствие работы механизма направленной генетической рекомбинации). С точки же зрения общей теории эволюции , за возникновение этой информации отвечают случайные мутации и рекомбинации, среди которых затем и происходит отбор, и прямое воздействие Бога в этом процессе, якобы, не играет никакой роли. Но один из материалов, опубликованных в журнале "Nature", позволяет сделать вывод, что не все эволюционисты строго относят естественный отбор к эволюционным процессам:

Но биологи-эволюционисты вводят себя в заблуждение, если полагают, что хорошо понимают роль отбора в природе.

С точки зрения креационизма, поскольку естественный отбор действует в ограниченных рамках и постоянно сокращает количество генетической информации в пределах популяции, специализация, встречающаяся у многих организмов, может быть отнесена, скорее, к генетической рекомбинации . Многие организмы, в частности, белый медведь, приспособились к экстремальным условиям, которых не было в период Сотворения мира. Наследственные черты, позволившие им выжить, с большой вероятностью отсутствовали у них первоначально, но стали результатом генетической рекомбинации. Естественный отбор всего лишь влияет на выраженность наследственных черт. Вопрос, который надо задать себе, звучит так: может ли такая сильная специализация быть результатом всего лишь естественного отбора среди вариаций наследственных черт, вызванных случайными причинами? Может ли случайное придание потомству таких качеств, как большие или меньшие размеры, более или менее яркий цвет, привести к появлению наблюдаемых сегодня на планете специализаций? Если нет, то речь идёт о другом - генетической рекомбинации под влиянием воздействия среды. Естественный отбор также задействован в механизме, касающемся распространения мутаций. Естественный отбор предотвращает распространение большинства опасных мутаций, но не всех - некоторые остаются в популяции. Согласно креационной модели, всё живое, включая наших первых отца и мать, Адама и Еву, было сотворено без единой генетической ошибки. Это означает, что мы, накопившие опасные мутации, испорчены по сравнению с нашими предками. Естественный отбор уменьшает скорость накопления ошибок в генофонде, но не удаляет из него все опасные мутации. Поэтому его можно считать лишь процессом, замедляющем деградацию видов, но не более того. Без него человечество деградировало бы быстрее, но и с ним деградация имеет место всё равно. Более того, естественный отбор может даже ускорять деградацию, ведь не факт, что наиболее приспособленный к текущим условиям окажется с наименее деградированным генетическим кодом. Да и эффект бутылочного горлышка , вызываемый естественным отбором, сохранности генетического кода не способствует. Это прямо противоположно точке зрения дарвинизма , согласно которой, нынешние организмы, якобы, совершеннее своих предков.

Естественный отбор и эволюционизм

Естественный отбор работает с набором генов, относящихся к определённой наследственной черте. Она видоизменяется в пределах популяции, поскольку ген или гены, отвечающие за неё, присутствуют более, чем в одной форме. Эти вариациии гена называются аллелями , о которых говорят, что они находятся в одном семействе генов. Поскольку приспособление в конечном итоге полагается на аллели, среди которых может происходить отбор, ценральным вопросом в дебатах между креационистами и эволюционистами является следующий: какой же механизм отвечает за их возникновение? Иными словами, что создаёт новые аллели: случайное, непреднамеренное изменение, или же клеточные механизмы, создающие их преднамеренно?

Биологи-эволюционисты утверждают, будто новые гены и генетическое разнообразие возникают по причине сочетания дупликации генов и случайных мутаций , что сопровождается сложным каскадом морфологических изменений, которые, якобы, делают возможным не только видообразование, но и "эволюцию" "от молекул до людей". Действительно, проанализировав последовательность тех или иных генов в популяции, можно обнаружить небольшие различия некоторых из них. Когдща эволционист обнаруживает эти изменения, он автоматически считает их результатами случайных мутаций.

Например, у прокариотов некоторые из ферментов, предназначенных для репликации ДНК (полимераз), вначале показались более подверженными ошибкам, чем другие. Бытовало мнение, что эти "низкокачественные" полимеразы были причиной ошибок при неблагоприятных воздействиях на бактерии. Но выяснилось, что эти ферменты являются частью механизма, обеспечивающегося изменчивость при попадании организма в условия, к которым он не приспособлен. Этот механизм получил название SOS-системы.

Теперь также известно, что не все гены изменчивы, и что существуют гены, являющиеся гиперизменчивыми по сравнению с нейтральными участками между генами. Изучением характера изменений гиперизменчивых генов удалось выяснить, случайными эти изменения не являются. Всегда имеются сохраняемые области кодонов, а также определённые схемы изменений. Вместо случайного копирования возникающих ошибок (мутаций), за изменчивость отвечает такая разновидность генетической рекомбинации, как генная конверсия.

Сворачивание белков

Основываясь на наших экспериментальных наблюдениях, а также расчётах, сделанных нами с использованием популяционной модели, опубликованной в , мы оцениваем период времени, который потребовался бы по дарвиновскому сценарию для изученного нами едва заметного изменения функции фермента, более, чем в триллион триллионов раз.

Естественный отбор и креационизм

Креационисты не отрицают естественный отбор, но лишь тогда, когда ему не дают тавтологическое определение. Он объясняет механизм, отбора наследственных черт и приспособления организмов к условиям. Этот полностью натуралистический механизм, наблюдаемый сегодня в природе, отвечает за приспособление в малых пределах, но не за радикальные изменения генома, о которых эволюционисты думают, будто таковые "обязаны" происходить. Таким образом, поскольку всё, что наблюдается - это малые изменения, что как раз соответствует представлению о происходящем с организмами по причине естественного отбора, ложные выводы эволюционистов можно считать основанными не на результатах наблюдений, а на экстраполяции таковых на представления, вызванные натуралистической и эволюционной предвзятостью.

Галапагосские зяблики являются классическим примером результатов естественного отбора. Вероятность выживания птицы с клювом, более подходящим по форме и размерам к текущим условиям, больше, а с менее подходящим - меньше. Но одновременно с увеличением приспособленности птиц к среде обитания произошло и обеднение их генофонда.

  1. Организмы, более приспособленные к условиям, выживают чаще.
  2. Приспособление к условиям сопровождается специализацией и уменьшением физического и генетического разнообразия.

По дарвинистской модели происхождения жизни, новую информацию в генофонд, якобы, вносят мутации, а естественный отбор разделяет их на полезные, нейтральные и вредные. В креационизме же естественный отбор считается частью целенаправленно спроектированной системы. С этой точки зрения, вся полезная генетическая информация является результатом работы Господа. Он создал все организмы с уже имеющейся изменчивостью, а также молекулярные механизмы, осуществляющие модификацию, когда это необходимо, и такую, которая необходима. Вместе с естественным отбором, генетическая рекомбинация систематически позволяет организмам приспособливаться к условиям и специализироваться. Креационисты признают три источника разнообразия естественных черт:

  • Уже присутствующие - вариации, созданные Господом изначально;
  • Генетическая рекомбинация - вариации, внесённые клеточными механизмами;
  • Мутации тоже могут вызывать вариации, но только косвенно, вследствие деактивации генов либо провоцирования средой; они являются наследуемыми.

Естественный отбор влияет на всё перечисленное выше. С точки зрения дарвинизма, причинами всех естественных черт являются мутации, а с точки зрения креационизма, большая их часть заложена Господом изначально, а остальная небольшая часть является результатом рекомбинаций. Получается, что виды быстро приспосабливаются к условиям и специализируются по той причине, что эта способность в них заложена изначально , а вовсе не является результатом случайных мутаций. Этому процессу не требуются ни постепенность, ни длительные периоды времени. В любом случае, естественный отбор работает лишь с теми вариациями наследственных черт, которые уже есть в популяции, независимо от их источников.

«Выживание наиболее приспособленного» как тавтология

Иногда термин «естественный отбор» может быть тавтологическим - когда ему дают соответствующие определения. Выживание наиболее приспособленного - а кто наиболее приспособлен? Тот, кто выживает. А кто выживает? Наиболее приспособленный. То есть, термин «естественный отбор» вообще несёт какой-либо смысл лишь тогда, когда правильно определён. А именно, когда приспособленностью называют бóльшую вероятность продолжения рода. Это - определение, не «висящее в воздухе», а связанное с другими. Живое существо получает больший шанс продолжения рода, поскольку у его конкурентов накопилось больше разрушительных мутаций. Некоторые ошибочно полагают, будто креационисты отрицают естественный отбор. В журнале Scientific American опубликована небольшая дискуссия, в которой подвергнут критике т. наз. «логический круг » в материале «15 ответов на креационистский „нонсенс“ ». Там «забыли» сказать, что, поддерживая эволюционизм, термин «естественный отбор» часто используют тавтологическим способом, что не всегда легко распознать. С другой стороны, некоторые начинающие креационисты сами иногда ошибочно полагают, будто


научн. сотр. лаборатории анализа генома Ин-та общей генетики
им. Н.И. Вавилова РАН

Генетическое разнообразие народов

Люди, живущие в разных концах Земли, отличаются по многим признакам: языковой принадлежности, культурным традициям, внешности, генетическим особенностям. Генетические характеристики народов зависят от их истории и образа жизни. Различия между ними возникают в изолированных популяциях, не обменивающихся потоками генов (т.е. не смешивающихся из-за географических, лингвистических или религиозных барьеров), за счет случайных изменений частот аллелей и процессов позитивного и негативного естественного отбора.

Случайное изменение частот аллелей в популяции называется генетическим дрейфом . Различия этих частот без действия каких-либо дополнительных факторов обычно невелики. При сокращении численности или отселении небольшой группы, дающей начало новой популяции, частоты аллелей могут сильно колебаться. В новой популяции они будут зависеть от генофонда основавшей ее группы (так называемый эффект основателя – все носители мутации получают ее от общего предка, у которого она возникла). С этим эффектом связывают повышенную частоту болезнетворных мутаций в некоторых этнических группах. Например, у японцев один из видов врожденной глухоты вызывается мутацией, возникшей однократно в прошлом и не встречающейся в других районах мира. У белых австралийцев глаукома связана с мутацией, завезенной переселенцами из Европы. У исландцев найдена мутация, повышающая риск развития рака и восходящая к общему прародителю. Аналогичная ситуация обнаружена у жителей о. Сардиния, но у них мутация другая, отличная от исландской. Среди русских, живущих в Башкортостане, из нескольких сотен мутаций, приводящих к фенилкетонурии, встречается преимущественно одна, что связывают с переселением в этот регион относительно небольшой группы русских, обладавших ею. Эффект основателя – одно из возможных объяснений отсутствия у американских индейцев разнообразия по группам крови AB0: у них преобладает группа 0 (первая), частота ее более 90%, а во многих популяциях – 100%. Так как Америка заселялась небольшими группами, пришедшими из Азии через перешеек, соединявший эти материки десятки тысяч лет назад, возможно, что в популяции, давшей начало коренному населению Нового Света, другие группы крови отсутствовали.

Слабовредные мутации могут долго поддерживаться в популяции, а вредные, значительно снижающие приспособленность индивида, отсеиваются отбором. Показано, что болезнетворные мутации, вызывающие тяжелые формы наследственных заболеваний, обычно эволюционно молоды. Давно возникшие мутации, длительное время сохраняющиеся в популяции, связаны с более легкими формами болезни.

Адаптация к условиям обитания фиксируется в ходе отбора благодаря случайно возникшим новым аллелям, повышающим приспособленность к данным условиям, или за счет изменения частот давно существующих аллелей. Разные аллели обусловливают варианты фенотипа, например цвета кожи или уровня холестерина крови. Частота аллеля, обеспечивающего адаптивный фенотип (например, темная кожа в зонах с интенсивным солнечным облучением), возрастает, поскольку его носители более жизнеспособны в данных условиях.

Адаптация к различным климатическим зонам проявляется как вариация частот аллелей комплекса генов, географическое распределение которых соответствует климатическим зонам. Однако наиболее заметный след в глобальном распределении генетических изменений оставили миграции народов, связанные с расселением от африканской прародины.

Происхождение и расселение человека

Ранее историю появления вида Homo sapiens на Земле реконструировали на основе палеонтологических, археологических и антропологических данных. В последние десятилетия появление молекулярно-генетических методов и исследования генетического разнообразия народов позволили уточнить многие вопросы, связанные с происхождением и расселением людей современного анатомического типа.

Молекулярно-генетические методы, используемые для восстановления демографической истории, сходны с лингвистической реконструкцией праязыка. Время, когда два родственных языка разделились (т.е. когда исчез их общий предковый праязык), оценивают по количеству различающихся слов, появившихся за период раздельного существования этих языков. Аналогично возраст предковой популяции, общей для двух современных народов, рассчитывают по количеству мутаций, накопившихся в ДНК их представителей. Чем больше различий в ДНК, тем больше времени прошло с момента разделения популяций. Так как скорость накопления мутаций в ДНК известна, по числу мутаций, отличающих две популяции, можно определить дату их расхождения (если предположить, что после разделения они больше не встречались и не смешивались).

Для датировки этого события используют нейтральные мутации, которые не влияют на жизнеспособность индивида и не подвержены действию естественного отбора. Они найдены во всех участках генома человека, но наиболее часто используют мутации в ДНК, содержащейся в клеточных органеллах – митохондриях. В оплодотворенной яйцеклетке присутствует только материнская митохондриальная ДНК (мтДНК), поскольку спермий свои митохондрии яйцеклетке не передает. Для филогенетических исследований мтДНК имеет особые преимущества. Во-первых, она не подвергается рекомбинации, как аутосомные гены, что значительно упрощает анализ родословных. Во-вторых, в клетке она содержится в количестве нескольких сотен копий и гораздо лучше сохраняется в биологических образцах.

Первым использовал мтДНК для реконструкции истории человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы мтДНК, полученные из крови людей из всех частей света, и на основе выявленных между ними различий построил филогенетическое древо человечества. Оказалось, что все современные мтДНК могли произойти от мтДНК общей праматери, жившей в Африке. Обладательницу предковой мтДНК тут же окрестили «митохондриальной Евой», что породило неверные толкования – будто все человечество произошло от одной-единственной женщины. На самом деле у «Евы» было несколько тысяч соплеменниц, просто их мтДНК до наших времен не дошли. Однако все они, без сомнения, оставили свой след: от них мы унаследовали генетический материал хромосом. Характер наследования в данном случае можно сравнить с семейным имуществом: деньги и земли человек может получить от всех предков, а фамилию – только от одного из них. Генетическим аналогом фамилии, передаваемой по женской линии, служит мтДНК, а по мужской – Y-хромосома, передаваемая от отца к сыну.

Изучение мтДНК и ДНК Y-хромосомы подтвердили африканское происхождение человека, позволили установить пути и даты его миграции на основе распространения различных мутаций у народов мира. По современным оценкам, вид H.sapiens появился в Африке более 100 тыс. лет назад, затем расселился в Азии, Океании и Европе. Позже всего была заселена Америка.

Вероятно, исходная предковая популяция H.sapiens состояла из небольших групп, ведущих жизнь охотников-собирателей. Мигрируя, люди несли с собой свои традиции, культуру и свои гены. Возможно, они также обладали и праязыком. Пока лингвистические реконструкции происхождения языков мира ограничены периодом 15–30 тыс. лет, и существование общего праязыка только предполагается. И хотя гены не определяют ни язык, ни культуру, в некоторых случаях генетическое родство народов совпадает и с близостью их языков и культурных традиций. Но есть и противоположные примеры, когда народы меняли язык и перенимали традиции своих соседей. Такая смена происходила чаще в районах контактов различных волн миграций или же в результате социально-политических изменений или завоеваний.

Конечно, в истории человечества популяции не только разделялись, но и смешивались. На примере линий мтДНК результаты такого смешения можно наблюдать у народов Волго-Уральского региона. Здесь столкнулись две волны расселения – европейская и азиатская. В каждой из них к моменту встречи на Урале в мтДНК успели накопиться десятки мутаций. У народов Западной Европы азиатские линии мтДНК практически отсутствуют. В Восточной Европе они встречаются редко: у словаков – с частотой 1%, у чехов, поляков и русских Центральной России – 2%. По мере приближения к Уралу частота их возрастает: у чувашей – 10%, у татар – 15%, у разных групп башкир – 65–90%. Закономерно, что у русских Волго-Уральского региона количество азиатских линий больше (10%), чем в Центральной России.

К изменениям условий среды (температуры, влажности, интенсивности солнечного облучения) человек приспосабливается за счет физиологических реакций (потоотделения, загара и т.п.). Однако в популяциях, проживающих долгое время в определенных климатических условиях, адаптации к ним накапливаются на генетическом уровне. Они меняют внешние признаки, сдвигают границы физиологических реакций (например, скорость сужения сосудов конечностей при охлаждении), «подстраивают» биохимические параметры (такие, как уровень холестерина в крови) к оптимальным для данных условий.

Климат. Один из наиболее известных расовых признаков – цвет кожи, пигментация которой у человека задана генетически. Пигментация защищает от повреждающего действия солнечного облучения, но не должна препятствовать получению минимальной дозы облучения, необходимой для образования витамина D, предотвращающего рахит. В северных широтах, где низкая интенсивность облучения, у людей кожа более светлая, а в экваториальной зоне – самая темная. Однако у обитателей затененных тропических лесов кожа светлее, чем можно было бы ожидать на данной широте, а у некоторых северных народов (чукчей, эскимосов), напротив, она относительно сильно пигментирована. В последнем случае это объясняется либо поступлением витамина D с пищей (рыбой и печенью морских животных), либо недавней в эволюционном масштабе миграцией северных групп из более низких широт.

Таким образом, интенсивность ультрафиолетового излучения действует как фактор отбора, приводя к географическим вариациям в цвете кожи. Светлая кожа – эволюционно более поздний признак и возникла за счет мутаций в нескольких генах, регулирующих выработку кожного пигмента меланина (ген рецептора меланинокортина MC1R и другие). Способность загорать также детерминирована генетически. Ею отличаются жители регионов с сильными сезонными колебаниями интенсивности солнечного излучения.

Известны связанные с климатическими условиями различия в строении тела. Это адаптации к холодному или теплому климату. Так, короткие конечности у жителей арктических областей (чукчей, эскимосов) уменьшают отношение поверхности тела к его массе и тем самым сокращают теплоотдачу. Обитатели жарких сухих регионов, например африканские масаи, напротив, отличаются длинными конечностями. У жителей влажного климата более широкие и плоские носы, а в сухом и более холодном климате носы длиннее, что способствует согреванию и увлажнению вдыхаемого воздуха.

Повышенное содержание гемоглобина в крови и усиление легочного кровотока служат приспособлением к высокогорным условиям. Такие особенности свойственны аборигенам Памира, Тибета и Анд. Все эти признаки определяются генетически, но степень их проявления зависит от условий развития в детстве: например, у андских индейцев, выросших на уровне моря, а затем переселившихся в высокогорные районы они менее выражены.

Типы питания. Некоторые генетические изменения связаны с разными типами питания. Среди них наиболее известна непереносимость молочного сахара (лактозы) – гиполактазия. У детенышей всех млекопитающих для усвоения лактозы вырабатывается фермент лактаза. По окончании вскармливания она исчезает из кишечного тракта детеныша. Отсутствие фермента у взрослых – исходный, предковый признак для человека.

Во многих азиатских и африканских странах, где взрослые традиционно не пьют молоко, после пятилетнего возраста лактаза не синтезируется, и потому употребление молока приводит к расстройству пищеварения. Однако большинство взрослых европейцев могут без вреда для здоровья пить молоко: синтез лактазы у них не прекращается из-за мутации в участке ДНК, регулирующем образование фермента. Эта мутация распространилась после появления молочного скотоводства 9–10 тыс. лет назад и встречается преимущественно у европейских народов. Более 90% шведов и датчан способны усваивать молоко, и лишь небольшая часть населения Скандинавии отличается гиполактазией. В России частота гиполактазии составляет около 30% для русских и более 60–80% для коренных народов Сибири и Дальнего Востока. Народы, у которых гиполактазия сочетается с молочным скотоводством, традиционно используют не сырое молоко, а кисломолочные продукты, в которых молочный сахар уже расщеплен бактериями.

Отсутствие сведений о генетических особенностях народов порой приводит к тому, что при гиполактазии людям, реагирующим на молоко расстройством пищеварения, которое принимают за кишечные инфекции, вместо необходимого изменения диеты предписывают лечение антибиотиками, ведущее к дисбактериозу.

Кроме употребления молока еще один фактор мог влиять на сохранение у взрослых синтеза лактазы. В присутствии лактазы молочный сахар способствует усвоению кальция, выполняя те же функции, что и витамин D. Возможно, именно поэтому у северных европейцев мутация, о которой идет речь, встречается чаще всего. Это пример генетической адаптации к взаимодействующим пищевым и климатическим факторам.

Еще несколько примеров. Эскимосы при традиционном питании обычно потребляют до 2 кг мяса в день. Переварить такие количества мяса можно лишь при сочетании определенных культурных (кулинарных) традиций, микрофлоры определенного типа и наследственных физиологических особенностей пищеварения.

У народов Европы встречается целиакия – непереносимость белка глутена, содержащегося в зернах ржи, пшеницы и других злаков. Она вызывает при потреблении в пищу злаков множественные нарушения развития и умственную отсталость. Заболевание в 10 раз чаще встречается в Ирландии, чем в странах континентальной Европы, вероятно, потому, что в ней пшеница и другие злаки традиционно не были основными продуктами питания.

У жителей Северноазиатского региона часто отсутствует фермент трегалаза, расщепляющий углеводы грибов. Эта наследственная особенность сочетается с культурной: в этих местах грибы считаются пищей оленей, не пригодной для человека.

Для жителей Восточной Азии характерна другая наследственная особенность обмена веществ. Известно, что многие монголоиды даже от небольших доз спиртного быстро пьянеют и могут получить сильную интоксикацию. Это связано с накоплением в крови ацетальдегида, образующегося при окислении алкоголя ферментами печени. Известно, что алкоголь окисляется в печени в два этапа: сначала превращается в токсичный ацетальдегид, а затем окисляется с образованием безвредных продуктов, которые выводятся из организма. Скорость работы ферментов первого и второго этапов (алкогольдегидрогеназы и ацетальдегидрогеназы) задается генетически. Для коренного населения Восточной Азии характерно сочетание «быстрых» ферментов первого этапа с «медленными» ферментами второго этапа. В этом случае при приеме спиртного этанол быстро перерабатывается в альдегид (первый этап), а его дальнейшее удаление (второй этап) происходит медленно. Такая особенность связана с сочетанием двух мутаций, влияющих на скорость работы упомянутых ферментов. Предполагается, что высокая частота этих мутаций (30–70%) есть результат адаптации к неизвестному пока фактору среды.

Приспособления к типу питания связаны с комплексами генетических изменений, не многие из которых пока детально изучены на уровне ДНК. Известно, что около 20–30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые пищевые вещества и лекарства, в частности амитриптилин, благодаря наличию двух или более копий гена, кодирующего один из видов цитохромов – ферментов, разлагающих чужеродные вещества, поступающие в организм с пищей. У других народов удвоение данного гена цитохрома встречается с частотой не более 3–5%, и распространены неактивные варианты гена (от 2–7% у жителей Европы и до 30% в Китае). Возможно, число копий гена увеличивается из-за особенностей диеты (использования больших количеств перца или съедобного растения тефф, составляющего до 60% пищевых продуктов в Эфиопии и нигде больше не распространенного в такой степени). Однако определить, где причина, а где следствие в настоящее время невозможно. Случайно ли увеличение в популяции носителей множественных генов позволило людям есть какие-то особые растения? Или, наоборот, употребление перца (или другой пищи, для усвоения которой необходим цитохром) послужило фактором отбора индивидов с удвоенным геном? Как тот, так и другой процесс могли иметь место в эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы взаимодействуют. Употребление той или иной пищи становится возможным лишь при наличии определенных генетических предпосылок, а диета, ставшая традиционной, действует как фактор отбора, влияя на частоту аллелей и распространение в популяции наиболее адаптивных при таком питании генетических вариантов.

Традиции обычно меняются медленно. Например, переход от собирательства к земледелию и соответственно смена диеты и образа жизни осуществлялись на протяжении десятков поколений. Относительно медленно происходят и сопровождающие такие события изменения генофонда популяций. Частоты аллелей могут колебаться на 2–5% за поколение, из-за чего одни аллели постепенно накапливаются, а другие – исчезают. Однако другие факторы, например эпидемии, часто связанные с войнами и социальными кризисами, могут в несколько раз поменять частоты аллелей в популяции на протяжении жизни одного поколения за счет резкого снижения численности популяции. Так, завоевание Америки европейцами привело к гибели до 90% коренного населения, и эпидемии оказали большее значение, чем войны.

Устойчивость к инфекционным заболеваниям

Оседлый образ жизни, развитие земледелия и скотоводства, повышение плотности населения способствовали распространению инфекций и появлению эпидемий. Так, туберкулез – изначально болезнь крупного рогатого скота – человек приобрел после одомашнивания животных. С ростом городов заболевание стало эпидемически значимым, что сделало актуальной устойчивость к инфекции, также имеющей генетический компонент.

Наиболее подробно изученный пример подобной устойчивости –распространение в тропической и субтропической зонах болезни серповидноклеточной анемии, названной так из-за серповидной формы эритроцитов (определяется при микроскопическом анализе мазка крови). Эта наследственная болезнь обусловлена мутацией в гене гемоглобина, приводящей к нарушению его функций. Носители мутации оказались устойчивыми к малярии. В зонах распространения заболевания наиболее адаптивно гетерозиготное состояние: гомозиготы с мутантным гемоглобином погибают от анемии, гомозиготы по нормальному гену болеют малярией, а гетерозиготы, у которых анемия проявляется в мягкой форме, защищены от малярии.

Такие примеры показывают, что платой за повышенную адаптивность гетерозигот может быть гибель на порядок реже встречающихся гомозигот по болезнетворной мутации, которые неизбежно появляются при увеличении ее популяционной частоты.

Еще один пример генетической детерминации восприимчивости к инфекциям – так называемые прионные заболевания. К ним относится губчатая болезнь мозга рогатого скота (коровье бешенство), вспышка которого среди рогатого скота наблюдалась после появления новой технологии переработки костной муки, идущей на корм животным. Инфекция с очень небольшой частотой передается человеку через мясо больных животных. Немногие заболевшие люди оказались носителями редкой мутации, раньше считавшейся нейтральной.

Существуют мутации, защищающие от инфицирования вирусом иммунодефицита человека либо замедляющие развитие болезни после заражения. Две таких мутации встречаются во всех популяциях (с частотой от 0 до 70%), а еще одна – только в Европе (частота – 5–18%). Предполагается, что эти мутации распространились в прошлом в связи с тем, что обладают защитным эффектом 2 и в отношении других эпидемических заболеваний.

Развитие цивилизации и генетические изменения

Кажется удивительным тот факт, что питание бушменов – охотников-собирателей, живущих в Южной Африке, – оказалось полностью соответствующим рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов, микроэлементов и калорий. Биологически человек и его непосредственные предки на протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей.

Изменения традиционного питания и образа жизни отражаются на здоровье людей. Например, афроамериканцы чаще, чем евроамериканцы, болеют гипертонией. У северных народов, традиционная диета которых была богата жирами, переход на европейскую высокоуглеводную диету способствует развитию диабета и других заболеваний.

Преобладавшие ранее представления о том, что с развитием производящего хозяйства (земледелия и скотоводства) здоровье и питание людей неуклонно улучшается, сейчас опровергнуто. После появления земледелия и скотоводства значительное распространение получили многие заболевания, редко встречавшиеся у древних охотников-собирателей или вообще им неизвестные. Сократилась продолжительность жизни (от 30–40 лет до 20–30), в 2–3 раза увеличилась рождаемость и одновременно выросла абсолютная детская смертность, хотя относительный уровень ее, видимо не изменился: лишь 40% живорожденных детей доживали до репродуктивного возраста. Костные останки раннеземледельческих народов гораздо чаще имеют признаки перенесенной анемии, недоедания, различных инфекций, чем у доземледельческих народов. Лишь в Средневековье наступил перелом, и средняя продолжительность жизни стала увеличиваться. Заметное улучшение здоровья населения и снижение детской смертности в развитых странах связано с появлением современной медицины.

Сегодня для земледельческих народов характерны высокоуглеводная и высокохолестериновая диета, использование соли, снижение физической активности, оседлый образ жизни, высокая плотность населения, усложнение социальной структуры. Приспособление популяций к каждому из этих факторов сопровождается генетическими изменениями: адаптивных аллелей становится больше, а неадаптивных меньше, поскольку их носители менее жизнеспособны или менее плодовиты. Например, низкохолестериновая диета охотников-собирателей делает адаптивной для них способность к интенсивному поглощению холестерина из пищи, но при современном образе жизни она становится фактором риска атеросклероза и сердечно-сосудистых заболеваний. Эффективное усвоение соли, бывшее полезным при ее недоступности, в современных условиях превращается в фактор риска гипертонии. При рукотворном преобразовании среды обитания человека популяционные частоты аллелей меняются так же, как и при естественной адаптации.

Рекомендации врачей по поддержанию здоровья – физическая активность, прием витаминов и микроэлементов, ограничение соли и т.п. – по сути, искусственно воссоздают условия, в которых человек жил большую часть времени своего существования как биологического вида.

Вероятно, что определенные адаптации могли быть связаны и с коллективным образом жизни человека. Так, возросшая частота депрессий в современных обществах западного типа вызвана утратой поддержки родовой группы. В ряде исследований показано, что с разрушением родовой системы снижается выживаемость детей, повышается риск развития заболеваний. Согласно статистике, существенно различается частота депрессий в разных странах (в европейских она в пять раз выше), а частота шизофрении везде примерно одинакова. Как считают специалисты, генетическая детерминация депрессии довольно велика (30–40%). Можно предположить, что гены, ответственные за предрасположенность к депрессии, в обществах, где влияние коллектива еще велико, не столь опасны, как в обществе, где человек остается один на один со своими проблемами.

Итак, на формирование генофондов этнических групп влияет множество процессов: миграции и смешение народов, накопление мутаций в изолированных группах, адаптация популяций к условиям среды. Межпопуляционные (географические, языковые и иные) барьеры способствуют накоплению генетических различий, которые, однако, между соседями обычно не очень значительны. Географическое распределение этих различий отражает континуум меняющихся признаков и меняющихся генофондов. Генетические различия не подразумевают превосходства какой-либо расы, этнической или иной группы, образованной по какому-либо признаку (типу хозяйства или социальной организации). Напротив, они подчеркивают эволюционную ценность разнообразия, позволившую человечеству не только освоить все климатические зоны Земли, но и приспособиться к тем значительным изменениям среды, которые возникли в результате деятельности самого человека.

Литература

Генофонд и геногеография народонаселения России и сопредельных стран / Под ред. Ю.Г. Рычкова. – СПб., 2000.

Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. – СПб., 1997.

Лимборская С.А., Хуснутдинова Э.К., Балановская Е.В. Этногеномика и геногеография народов Восточной Европы. – М., 2002.

Степанов В.А. Этногеномика народов Северной Евразии – Томск, 2002.

Evolution in health and disease / Ed. S.C. Stearns. – N.Y., 1999.

Cavalli-Sforza L.L., Menozzi P., Piazza A. History and Geography of Human Genes, Princeton. – N.Y., 1994.

Кавалли-Сфорца Л.Л. Гены, народы, языки // В мире науки. 1992.

Уилсон А.К., Канн Р.Л. Недавнее африканское происхождение людей // В мире науки. 1992.

Боринская С.А., Хуснутдинова Э.К. Этногеномика: история с географией // Человек. 2002. № 1. С.19–30.

Хуснутдинова Э.К., Боринская С.А. Геномная медицина – медицина XXI века // Природа. 2002. № 12. С.3–8.

Геном человека: нити судьбы // Химия и жизнь. 1998. № 4. C.27–30.

Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. № 6. С.10–17.

Эти и другие научно-популярные статьи представлены на сайте www.vigg.ru в разделе «Программа «Геном человека».

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»