Индуктивные датчики: назначение и принцип работы, устройство индуктивного датчика. Индуктивные датчики. Виды. Устройство. Параметры и применение Концевые датчики индуктивного типа

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Бесконтактные датчики приближения можно встретить в медицинских приборах, в составе автоматизированных промышленных линий, в бытовой технике. Один из ведущих мировых производителей продукции для автоматизации, компания Autonics, предлагает бесконтактные датчики приближения серий (индуктивные) и (емкостные).

Что общего между индуктосином фрезерного станка, сенсорным экраном смартфона, датчиком закрытия двери автомобиля и светильником с автоматическим включением? Ответ – во всех приведенных приложениях используются датчики приближения.

Датчики приближения – элементы, позволяющие обнаруживать присутствие, приближение или удаление различных объектов. Это достаточно широкий класс устройств (рисунок 1).

По типу взаимодействия с объектом датчики приближения делятся на контактные и бесконтактные.

Яркими примерами контактных датчиков являются концевые выключатели (например, датчики закрытия дверей в автомобилях).

Контактные датчики могут выполнять не только функцию включения и выключения, но и определять положение объекта, например, резистивные датчики уровня топлива. Для них выходным является аналоговый сигнал – значение сопротивления, пропорциональное уровню жидкости.

Достоинствами контактных датчиков является простота устройства и использования. Среди их недостатков можно отметить наличие механических подвижных частей и невозможность, в большинстве случаев, создать высокий уровень пыле- и влагозащищенности, что приводит к сокращению срока службы. Гораздо более длительный ресурс и максимальную защиту от негативного воздействия внешней среды имеют бесконтактные датчики.

Бесконтактные датчики делятся на две группы: датчики положения и выключатели. Основная функция бесконтактных выключателей состоит в релейном переключении состояния выхода при обнаружении объекта. В датчиках положения на выходе формируется сигнал, зависящий от расстояния до объекта.

Каждая из групп содержит сенсоры с различными технологиями обнаружения: индуктивные, емкостные и фотоэлектрические.

Рассмотрим бесконтактные индуктивные и емкостные выключатели производства компании Autonics.

Устройство и принцип действия индуктивных и емкостных датчиков приближения

Емкостные и индуктивные датчики способны обнаруживать присутствие объекта без непосредственного контакта с ним. При этом индуктивные выключатели чувствительны только к металлическим предметам, а емкостные способны детектировать любые предметы, диэлектрическая проницаемость которых отлична от воздуха (например, воду, дерево, металл, пластик и так далее). Рассмотрим принцип работы каждого датчика отдельно.

Основным элементом индуктивного датчика является катушка индуктивности (рисунок 2). Она подключена к генератору. Переменное электрическое напряжение на ее выводах вызывает переменное магнитное поле. Линии поля будут перпендикулярны направлению тока в витках катушки.

При отсутствии вблизи катушки металлических объектов линии магнитного поля замыкаются по воздуху. А амплитуда электрических колебаний будет максимальной.

Если же к катушке приближать металлический объект, то все большая часть силовых линий начнет замыкаться через него. Индуктивность катушки начнет увеличиваться. Этот процесс схож с процессом введения сердечника. При этом рост индуктивности приведет к уменьшению амплитуды и/или частоты колебаний.

Если такую систему снабдить детектором, то по изменению амплитуды сигнала можно судить о наличии металлического объекта, его приближении или удалении.

В основе работы емкостного датчика, как следует из названия, положено использование емкостных связей. Сам датчик, по сути, представляет собой одну из обкладок пространственного конденсатора. Второй обкладкой является земля. В качестве диэлектрика выступает преимущественно воздух. Так как диэлектрическая проницаемость воздуха мала (ε = 1), то емкость такого конденсатора невелика. Если же к датчику начинает приближаться некоторый объект с более высоким значением ε, то суммарная емкость начнет увеличиваться (рисунок 3).

Таким образом, по величине емкости можно судить о наличии объекта, его приближении или удалении. При этом материал объекта может быть практически любым, важным является только значение его диэлектрической проницаемости.

Как правило, для измерения используются схемы с преобразованием емкости в частоту или амплитуду колебаний, которые измеряются с помощью детектора. В итоге, как и в случае с индуктивным датчиком, необходимо наличие двух обязательных элементов: генератора и детектора (рисунок 4).

Емкостные и индуктивные выключатели имеют выходной сигнал релейного типа – «включен» или «выключен» (рисунок 5). По этой причине схема датчиков имеет переключательный элемент – триггер, который для предотвращения ложных срабатываний снабжен гистерезисом.

Основные характеристики и особенности датчиков приближения

Зона чувствительности или активная зона (Sensing Distance), мм. Как было показано выше, диапазон действия датчиков приближения ограничен. Значительное изменение измеряемой емкости и индуктивности наблюдается вблизи чувствительного элемента сенсора (рисунки 2, 3).

Сенсор начинает «чувствовать» объект только на достаточно близких расстояниях, сравнимых с размерами самого датчика. Эта зона чувствительности называется активной зоной. В случае индуктивных датчиков она определяет область наибольшей плотности линий магнитного поля.

Расстояние срабатывания, мм. После попадания объекта в активную зону датчик переключается не сразу, а при достижении некоего порогового значения, которое задается внутренним триггером с гистерезисом.

Гистерезис необходим для исключения ложных срабатываний. При этом включение и выключение датчика происходят при различном уровне колебаний.

Рабочий зазор (Setting Distance), мм – расстояние, на котором гарантированно обнаруживается заданный объект.

В последнем определении использовался термин «заданный объект». Необходимо сделать дополнительные пояснения. Дело в том, что все перечисленные характеристики не являются жестко заданными. На их величину влияет целый ряд факторов: материал и размер объекта, температурный дрейф, технологические параметры самого датчика. По этой причине все приведенные характеристики измеряются при использовании конкретного объекта при нормальной температуре (обычно 20 или 25°С).

Влияние материала и размеров объекта обнаружения на параметры индуктивных датчиков. Как было показано выше, приближающийся металлический объект выступает в роли сердечника для чувствительной катушки. Очевидно, что материал и форма сердечника оказывают значительное влияние на значение индуктивности.

По этой причине все номинальные характеристики относятся к конкретному объекту, который всегда указывается в документации на датчик. Обычно это железная квадратная пластина с заданными размерами.

Если предполагается использовать другой материал, то необходимо использовать поправочный коэффициент редукции (таблица 1).

Таблица 1. Примеры коэффициентов редукции индуктивных датчиков

Влияние материала и размеров объекта обнаружения на параметры емкостных датчиков. Емкость результирующего конденсатора также зависит от формы и материала объекта. Максимальная чувствительность у датчика наблюдается для материалов с большой диэлектрической проницаемостью (таблица 2).

Таблица 2. Значения диэлектрической проницаемости для различных материалов

Важно понимать, что при настройке и установке датчика следует учитывать возможность намокания или замасливания объекта наблюдения. Например, для воды ε = 80, поэтому даже тончайшая водяная пленка приведет к значительному изменению емкости. В этом может убедиться любой пользователь ноутбука с тачпадом. Если тачпад намочить – ноутбук потеряет управление до полного высыхания поверхности сенсора. Такая же картина наблюдается и в случае промышленных емкостных датчиков.

Размер объекта также имеет значение. Чем больше объект – тем больше емкость.

Температурный дрейф параметров датчиков приближения. Данная зависимость характеризует изменение характеристик датчика (размеров активной зоны и рабочего зазора) при изменении температуры.

Начальная точность, %. В документации на датчик кроме номинальных значений всегда указывается начальная точность – значение для заданной температуры и влажности. Этот разброс связан с технологическими особенностями производства датчика.

Частота срабатывания (Response Frequency), Гц, характеризует частоту переключений датчика.

Наибольшей частотой срабатывания обладают датчики, питающиеся от постоянного напряжения. При этом имеет место зависимость частоты от размеров активной поверхности датчика и расстояния до объекта (таблица 3).

Таблица 3. Влияние размеров активной поверхности и расстояния до объекта на частоту срабатывания 2-проводного цилиндрического датчика постоянного тока 24 В

Диаметр, мм Расстояние, мм Частота, Гц
М08 1,5 1500
2 1000
M12 2 1500
4 500
M18 5 500
8 350
M30 10 400
15 200

Датчики, питающиеся от переменной сети, имеют меньшую частоту переключений. Однако зависимость от размеров активной поверхности датчика и расстояния до объекта отсутствует (таблица 4).

Таблица 4. Влияние размеров активной поверхности и расстояния до объекта на частоту срабатывания 2-проводного цилиндрического датчика переменного тока 100…240 В

Диаметр, мм Расстояние, мм Частота, Гц
М12 2 20
4 20
М18 5 20
8 20
М30 10 20
15 20

Еще одной особенностью, о которой стоит помнить при использовании бесконтактных датчиков, является возможность взаимного влияния соседних сенсоров (рисунок 6). При монтаже датчиков не допускается их слишком близкое расположение на расстояниях меньших, чем указано в документации. Это касается случаев как встречной, так и параллельной установки.

Тип выходного каскада – одна из важнейших характеристик датчиков приближения. Датчики могут быть двух- и трехпроводными с нормально замкнутыми и нормально разомкнутыми контактами (рисунок 7).

Двухпроводные датчики Autonics выпускаются для работы с постоянным и переменным напряжением. Нагрузка может быть подключена как до, так и после датчика. При этом важно, чтобы величина сопротивления нагрузки обеспечивала протекание тока питания датчика. Если сопротивление нагрузки слишком велико – необходимо шунтировать его дополнительным резистором.

Трехпроводные сенсоры Autonics предназначены для работы в цепях постоянного тока и имеют два варианта исполнения с NPN- и PNP-выходным транзистором (рисунок 7). Если требуется постоянный контакт нагрузки с общей шиной – следует использовать датчик с PNP-выходом. Если же нагрузка требует подключения к шине питания – используется датчик с выходом NPN.

Выходной ток, мА – ток, который способен обеспечить выходной каскад датчика. Важный параметр, если сенсор напрямую управляет мощным потребителем. Если его мощности не хватает – следует использовать более мощный дополнительный внешний ключ.

Собственное падение напряжения, В, характеризует падение на датчике в замкнутом состоянии.

Собственный потребляемый ток, мА, измеряется для случая разомкнутых выходных контактов, то есть, когда через нагрузку не протекает ток.

Эксплуатационные характеристики. При использовании датчиков в жестких условиях промышленного производства следует помнить о таких параметрах как сопротивление изоляции, электрическая прочность, стойкость к вибрационным и ударным нагрузкам, рейтинг пыле- и влагозащищенности, рабочий диапазон температуры влажности.

Компания Autonics выпускает огромное количество бесконтактных выключателей. Рассмотрим два популярных семейства: индуктивные датчики PRDCM и емкостные датчики CR.

Обзор индуктивных датчиков PRDCM

PRDCM – серия индуктивных цилиндрических выключателей с увеличенной зоной чувствительности и светодиодом состояния (рисунок 8).

Датчики выпускаются в двухпроводном (таблица 6) и трехпроводном (таблица 5) исполнении. Активная зона представителей семейства достигает 25 мм, а рабочий зазор – 17,5 мм. Диапазон частот срабатываний составляет до 600 Гц.

Таблица 5. Основные характеристики трехпроводных датчиков семейства PRDCM

Параметр Наименование
PRDCM12-4DN, PRDCM12-4DP, PRDCM12-4DN2, PRDCM12-4DP2, PRDCML12-4DN, PRDCML12-4DP, PRDCML12-4DN2, PRDCML12-4DP2 PRDCM12-8DN, PRDCM12-8DP, PRDCM12-8DN2, PRDCM12-8DP2, PRDCML12-8DN, PRDCML12-8DP, PRDCML12-8DN2, PRDCML12-8DP2 PRDCM18-7DN, PRDCM18-7DP, PRDCM18-7DN2, PRDCM18-7DP2, PRDCML18-7DN, PRDCML18-7DP, PRDCML18-7DN2, PRDCML18-7DP2 PRDCM18-14DN, PRDCM18-14DP, PRDCM18-14DN2, PRDCM18-14DP2, PRDCML18-14DN, PRDCML18-14DP, PRDCML18-14DN2, PRDCML18-14DP2 PRDCM30-15DN, PRDCM30-15DP, PRDCM30-15DN2, PRDCM30-15DP2, PRDCML30-15DN, PRDCML30-15DP, PRDCML30-15DN2, PRDCML30-15DP2 PRDCM30-25DN, PRDCM30-25DP, PRDCM30-25DN2, PRDCM30-25DP2, PRDCML30-25DN, PRDCML30-25DP, PRDCML30-2SDN2, PRDCML30-25DP2
Зона чувствительности, мм 4 8 7 14 15 25
Гистерезис Макс. 10% от расстояния срабатывания
12x12x1 25x25x1 20x20x1 40x40x1 45x45x1 75x75x1
Рабочий зазор, мм 0…2,8 0…5,6 0…4,9 0…9,8 0…10,5 0…17,5
Напряжение питания ном., В 12/24
0…30
Ток потребления, мА Макс. 10
Частота срабатывания*, Гц 500 400 300 200 100 100
Макс. 1,5
Температурный дрейф Макс. ±10% от расстояния срабатывания при температурной окружающей среды 20°С
Номинальный ток, мА Макс. 200
Сопротивление изоляции Мин. 50 МОм (500 В пост. тока)
1500 В, 50/60 Гц в течение 1 минуты
Стойкость к вибрациям
Индикатор
Рабочая температура, °C -25…70
Температура хранения, °C -30…80
Влажность, % 35…95
Встроенная защита
Степень защиты (IP) IP67 (Стандарт МЭК)
Материал
Масса, г PRDCM: 26 PRDCM: 48 PRDCM: 142
PRDCML: 34 PRDCML: 66 PRDCML: 182

Таблица 6. Основные характеристики двухпроводных датчиков семейства PRDCM

Параметр Наименование Наименование
PRDCMT08-2DO, PRDCMT08-2DC, PRDCMT08-2DO-I, PRDCMT08-2DC-I PRDCMT08-4DO, PRDCMT08-4DC, PRDCMT08-4DO-I, PRDCMT08-4DC-I PRDCMT12-4DO,
PRDCMT12-4DC,
PRDCMT12-4DO-I,
PRDCMT12-4DC-I,
PRDCMLT12-4DO, PRDCMLT12-4DC, PRDCMLT12-4DO-I, PRDCMLT12-4DC-I
PRDCMT18-7DO,
PRDCMT18-7DC,
PRDCMT18-7DO-I,
PRDCMT18-7DC-I,
PRDCMLT18-7DO,
PRDCMLT18-7DC,
PRDCMLT18-7DO-I,
PRDCMLT18-7DC-I
PRDCMT18-7DO,
PRDCMT18-7DC,
PRDCMT18-7DO-I,
PRDCMT18-7DC-I,
PRDCMLT18-7DO,
PRDCMLT18-7DC,
PRDCMLT18-7DO-I,
PRDCMLT18-7DC-I
PRDCMT18-14DO,
PRDCMT18-14DC,
PRDCMT18-14DO-I,
PRDCMT18-14DC-I,
PRDCMLT18-14DO,
PRDCMLT18-14DC,
PRDCMLT18-14DO-I,
PRDCMLT18-14DC-I
PRDCMT30-15DO,
PRDCMT30-15DC,
PRDCMT30-15DO-I,
PRDCMT30-15DC-I,
PRDCMLT30-15DO,
PRDCMLT30-15DC,
PRDCMLT30-15DO-I,
PRDCMLT30-15DC-I
PRDCMT30-25DO,
PRDCMT30-25DC,
PRDCMT30-25DO-I,
PRDCMT30-25DC-I,
PRDCMLT30-25DO,
PRDCMLT30-25DC,
PRDCMLT30-25DO-I,
PRDCMLT30-25DC-I
Зона чувствительности, мм 2 4 8 7 14 15 25
Гистерезис Макс, 10% от расстояния срабатывания
Стандартный объект для обнаружения (железо), мм 8x8x1 12x12x1 25x25x1 20x20x1 40x40x1 45x45x1 75x75x1
Рабочий зазор, мм 0…1,4 0…2,8 0…5,6 0…5,6 0…9,8 0…10,5 0…17,5
Напряжение питания ном., В 12/24 12/24
Предельное напряжение питания, В 10…30 10…30
Ток потребления, мА Макс. 0,6 Макс. 0,6
Частота срабатывания*, Гц 600 500 500 400 250 200 100
Падение напряжения на датчике, В Макс. 3,5 Макс. 3,5
Температурный дрейф Макс. ±10% от расстояния срабатывания при температуре окружающей среды 20°C
Номинальный ток, мА 2…100 2…100
Сопротивление изоляции Мин. 50 МОм (=500 В) Мин. 50 МОм (=500 В)
Электрическая прочность диэлектрика ~1500 В, 50/60 Гц в течение 1 минуты
Стойкость к вибрациям Амплитуда 1 мм при частоте 10…55 Гц по каждому из направлений X, Y, Z в течение 2 часов Амплитуда 1 мм при частоте 10…55 Гц по каждому из направлений X, Y, Z в течение 2 часов
500 м/с2 (примерно 50g) направления X, Y, Z 3 раза 500 м/с2 (примерно 50g) направления X, Y, Z 3 раза
Индикатор Индикатор работы (красный светодиод) Индикатор работы (красный светодиод)
Рабочая температура, °C -25…70 -25…70
Температура хранения, °C -30…80 -30…80
Влажность, % 35…95% 35…95%
Встроенная защита От перенапряжения, обратной полярности, сверхтоков От перенапряжения, обратной полярности, сверхтоков
Материал Корпус/гайка: никелированная латунь, шайба: никелированное железо, считывающая поверхность: термоустойчивый акрилонитрил-бутадиен-стирол Корпус/гайка: никелированная латунь, шайба: никелированное железо, считывающая поверхность: термоустойчивый акрилонитрил-бутадиен-стирол
Степень защиты (IP) IP67 (Стандарт МЭК) IP67 (Стандарт МЭК)
Масса стандартной версии, г PRDCMT: 26 PRDCMT: 48 PRDCMT: 142
PRDCMLT: 36 PRDCMLT: 66 PRDCMLT: 182
Масса улучшенной версии**, г 15,5 15 23,5 22 46,5 42,5 160 165

* – Частота срабатывания представляет собой среднее значение: стандартный объект с удвоенной шириной на расстоянии 1/2 от номинального
** – Масса обновленной единицы относится только к PRDCMT

Особенностями данной серии являются расстояние срабатывания, увеличенное до 2,5 раз по сравнению с предыдущим поколением, и наличие коннектора на корпусе, что удобно в эксплуатации и сокращает временные и материальные затраты на монтаж.

Выходной каскад имеет шесть вариантов исполнения: двухпроводной нормально-замкнутый и нормально-разомкнутый, трехпроводной NPN нормально-замкнутый и нормально-разомкнутый, трехпроводной PNP нормально-замкнутый и нормально-разомкнутый. Диапазон питающих напряжений для всех датчиков: 10…30 В.

Нагрузочные характеристики трехпроводных представителей несколько выше: ток – до 200 мА, собственное падение напряжения – до 1,5 В. У двухпроводных – 100 мА и 3,5 В соответственно. Однако у трехпроводных выше и собственное потребление – до 10 мА (против всего 0,6 мА у двухпроводных).

Все датчики серии имеют отличные изоляционные свойства (до 1500 В) и высокое сопротивление изоляции 50 МОм.

Состояние датчика можно определить по светодиоду: если он светится, то ток поступает в нагрузку.

Датчики устойчивы к высоким вибрациям и ударным нагрузкам. Степень защиты (IP) составляет 67. Все это делает их отличным выбором для бытовых и промышленных приложений, таких как:

  • концевые датчики координатных столов в станках;
  • детекторы положения карусели инструментов фрезерных станков с ЧПУ;
  • датчики открытия дверей;
  • датчики приближения в установках автоматической роботизированной сварки;
  • датчики приближения в системах автоматической сборки;
  • детекторы брака (например, в линиях по производству консервов);
  • детекторы положения каруселей автоматического розлива молочных продуктов и так далее.

Код для заказа датчиков PRDCM представляет собой восьмипозиционное обозначение (таблица 7).

Таблица 7. Именование датчиков семейства PRDCM

P R D CMT 18 -7 DN -I
Тип датчика Форма корпуса Особенности Тип подключения Диаметр головки датчика, мм Зона чувствительности, мм Тип выхода Тип кабеля
P – индуктивный R – цилиндр D – с увеличенным расстоянием срабатывания CMT 2-проводной, стандартный, коннектор 12 DN NPN, 3-проводной, нормально разомкнутый I – стандарт МЭК
CMLT 2-проводной, удлиненный коннектор 18 DN2 NPN, 3-проводной, нормально замкнутый
CM 3-проводной, стандартный, коннектор 30 DP PNP, 3-проводной, нормально разомкнутый
CML 3-проводной, удлиненный коннектор DP2 PNP, 3-проводной, нормально замкнутый
DO 2-проводной, нормально разомкнутый
2-проводной, нормально замкнутый

Обзор емкостных датчиков CR

CR – серия емкостных цилиндрических датчиков от Autonics (рисунок 9).

Выпускаются датчики двух типоразмеров – и с зонами чувствительности 8 и 15 мм соответственно.

Двухпроводные нормально разомкнутые версии CRxx-xAO и двухпроводные нормально замкнутые версии CRxx-xAС работают с переменным выходным напряжением 110…240 В и током 5…200 мА. Частота срабатывания – 20 Гц.

Трехпроводные версии предназначены для работы в цепях постоянного напряжения 10…30 В с выходными токами до 200 мА. Их частота срабатывания достигает 50 Гц (таблица 8).

Таблица 8. Основные характеристики трехпроводных датчиков семейства CR

Параметр Наименование
, 85…264
Ток потребления, мА Макс. 15 Макс. 2,2
Частота срабатывания *, Гц 50 20
Температурный дрейф Макс. ±10% от расстояния срабатывания при температуре окружающей среды 20°С
Номинальный ток, мА Макс. 200
Сопротивление изоляции Мин. 50 МОм (500 В=)
Электрическая прочность диэлектрика ~1500 В, 50/60 Гц в течение 1 минуты
Стойкость к вибрациям амплитуда 1 мм при частоте 10…55 Гц по каждому из направлений X, Y, Z в течение 2 часов
500 м/с2 (примерно 50g) направления X, Y, Z 3 раза
Индикатор Индикатор работы (красный светодиод)
Рабочая температура, °C -25…70
Температура хранения, °C -30…80
Влажность, % 35…95
Встроенная защита от перенапряжения, обратной полярности от перенапряжения
Степень защиты (IP) IP66 IP65 IP66 IP65
Масса, г 76 206 70 200

* – Частота срабатывания представляет собой среднее значение: стандартный объект с удвоенной шириной на расстоянии 1/2 от номинального.

Состояние датчика можно определить по светодиоду. Если он светится – ток поступает в нагрузку.

Код для заказа датчиков серии CR включает 5 позиций: тип датчика, форму, диаметр головки, код зоны чувствительности, код типа выходного каскада (таблица 9).

Таблица 9. Именование датчиков семейства CR

C R 30 -15 DN
Тип датчика Форма корпуса Диаметр головки датчика, мм Зона чувствительности, мм Тип выхода
С – емкостной R – цилиндр 18 8 DN 3-проводной, NPN, нормально разомкнутый, питание 24 В DC
30 15 DN2
DP 3-проводной, PNP, нормально разомкнутый, питание 24 В DC
DP2 3-проводной, NPN, нормально замкнутый, питание 24 В DC
AO 2-проводной, нормально разомкнутый, питание 110…240 В AC
2-проводной, нормально замкнутый, питание 110…240 В AC

Стоит отметить и высокую степень защиты: IP66 – для CR18, IP66 – для CR30. Изоляционные свойства также на высоте. Так как емкостные датчики способны обнаруживать не только металлические объекты, то спектр приложений серии CR еще шире, чем у индуктивных датчиков. Сфера их применения:

  • концевые выключатели станков;
  • детекторы автоматических линий розлива молока, пива, и тому подобное;
  • датчики уровня жидкости;
  • детекторы обнаружения брака в текстильном производстве.

Заключение

Серия индуктивных датчиков PRDCM производства компании Autonics предназначена для обнаружения металлических объектов на расстояниях до 25 мм. Существует шесть возможных конфигураций выходного каскада сенсоров этой серии: двухпроводной нормально замкнутый и нормально разомкнутый, трехпроводной NPN нормально замкнутый и нормально разомкнутый, трехпроводной PNP-нормально замкнутый и нормально разомкнутый.

Серия емкостных датчиков CR производства компании Autonics предназначена для обнаружения различных объектов (в том числе – деревянных, металлических и пластиковых) на расстояниях до 15 мм. Датчики выпускаются с нормально замкнутыми и нормально разомкнутыми контактами для работы в цепях переменного напряжения 110…240 В (суффиксы AO и AC) и постоянного напряжения 10…30 В (суффиксы DN и DP).

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, и другие датчики применяются очень широко.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) - понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет – сигнал на контроллер или рвёт . Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами .

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – .

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам .

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный . Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм . Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков , на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – . Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Самым распространенным типом устройств в составе существующих АСУ ТП являются индуктивные датчики положения, их количество превышает 90% от всех применяемых дискретных датчиков положения. Любой технологический процесс в практически любой отрасли промышленности (пищевая, машиностроение, нефтегазовая, энергетика) требует отслеживать положение заслонок, приводов, клапанов, деталей и заготовок, подвижных элементов конструкций агрегатов и т.д. в автоматическом режиме.

Повсеместному распространению индуктивных датчиков послужили их надежность, отличные эксплуатационные характеристики и сравнительно низкая стоимость. Основными рабочими характеристиками индуктивных датчиков положения являются: диапазон срабатывания, степень защиты, рабочая температура и частота отклика.

Принцип действия индуктивных датчиков заключается в следующем. При подаче питания на датчик возбуждается первичная обмотка от переменного напряжения резонатор и тем самым создает вблизи себя электромагнитное поле. При помещении в зону действия электромагнитного поля металлического объекта, который, по сути, становится вторичной обмоткой, начинают наводиться токи вихревого характера, так называемые токи Фуко. Такое явление ведет к ухудшению добротности первичной обмотки, что в свою очередь приводит к изменению в сторону уменьшения амплитуды сигнала резонатора, из-за чего срабатывает компаратор (триггер Шмидта), далее сигнал усиливается посредством усилителя и выдается на выход датчика.

Параметры индуктивных датчиков положения и рекомендации по их применению

Чтобы правильно подобрать индуктивный датчик под определенную задачу необходимо знать ряд основных параметров, а также за какие функции эти параметры отвечают.

Наверное, главным параметром, указанным в паспорте на датчик является номинальный диапазон срабатывания . Он обозначается как Sn. Номинальный диапазон срабатывания, хотя и является основным параметром, но практического значения особо не имеет. Так как его значение получается при ряде ограничений связанных с внешними факторами, а именно: температура окружающей среды 20 градусов Цельсия, питающее напряжение 24 В постоянного или же 230 В переменного тока. А в качестве объекта должна использоваться стальная пластина, выполненная из определенной стали, квадратной формы с шириной в 3 раза больше ширины значения Sn и толщиной 1мм. Практическое же значение имеют такие параметры, как эффективный диапазон срабатывания Sr и полезный диапазон срабатывания Su. Значение Sr варьируется в пределах плюс минус 10% от номинального диапазона срабатывания, а измеряется в температурном диапазоне от 18 до 28 градусов Цельсия и при номинальном напряжении питания. Полезный диапазон срабатывания индуктивного датчика варьируется в пределах плюс минус 10% от эффективного и измеряется при напряжении питания равного 85% - 110% от номинального и температуре от -25 до +70 градусов Цельсия. Часто в техническом описании на датчик можно встретить такой параметр, как гарантированная зона (диапазон) срабатывания . Его нижняя граница равна 0, а верхняя значению 0.81Sn. Также важными параметрами индуктивных датчиков положения, влияющими на точность и достоверность измерений, являются гистерезис и повторяемость H и R соответственно. Гистерезисом называют расстояние между самыми дальними точками срабатывания датчика на объект при приближении и удалении последнего. Нормальным считается значение гистерезиса равное 0.2Sr.

Помимо свойств присущих непосредственно самому индуктивному датчику положения на диапазон срабатывания влияют свойства материала объекта, речь идет об электропроводимости и магнитной проницаемости. Для этого было введено понятие коэффициента редукции . Эталонным материалом считается Сталь 37, ее коэффициент редукции равен 1. Для других металлов коэффициент редукции имеет значение меньше 1. Например, нержавейка имеет коэффициент редукции 0.85, а медь всего лишь 0.3. То есть, если объектом срабатывания является медь, то диапазон срабатывания уменьшается до значения равного 0.3Sn .

Напряжение питания датчика

Питание индуктивных датчиков может осуществляться как от источников постоянного тока, так и источников переменного тока. Для постоянного тока характерны диапазоны напряжений: 10-30В, 10-60В и 5-60В. Для переменного тока характерен диапазон: 98-253В. Также существуют индуктивные датчики имеющие универсальное питание, такие датчики можно запитать как от источника постоянного, так и от источника переменного тока.

Номинальный ток нагрузки

Параметр показывает, на какое значение тока рассчитан датчик при действии нагрузки продолжительный интервал времени. Стандартным является значение равное 200мА, но бывают спец исполнения датчиков рассчитанные и на 500мА.

Частота отклика

Параметр показывает, с какой максимальной частотой, выраженной в герцах, датчик может осуществлять переключения. Для большинства промышленных применений хватает частоты отклика равной 1000Гц, а вот поднимать частоту выше 5кГц производителям датчиков нет особого смысла, так как такая частота будет выше, частоты выполнения стандартного цикла промышленного контроллера (ПЛК). Тем самым состояние такого датчика может быть неверно интерпретировано модулем ввода ПЛК.

При выборе датчиков также стоит обратить на степень защиты корпуса от брызг и пыли, и диапазон температуры при котором может работать индуктивный датчик. Стандартными являются степень защиты IP67, а температурный диапазон от минус 25 до плюс 70 градусов Цельсия.

Индуктивный датчик является очень распространенным устройством, входящим в состав низового оборудования в автоматизированных системах управления производством. Устройства широко применяются в машиностроении, текстильной, пищевой и других отраслях промышленности.

Наиболее эффективно приборы используются в станках в качестве конечных выключателей, а также в автоматических линиях.

При этом индуктивные датчики реагируют только на металлы, оставаясь нечувствительными к другим материалам. Данное свойство позволяет увеличить защищенность устройств от помех, вводя в их зону чувствительности различные смазки, эмульсии и другие вещества, что не вызовет ложного срабатывания.

Объектами, на которые воздействует индуктивный являются различные металлические детали: кулачки, ползуны, зубья шестеренок. Во многих случаях может применяться прикрепленная к деталям оборудования пластина.

По статистике, из всех используемых датчиков положения более 90 процентов приходится на индуктивные устройства.

Это можно объяснить их отличными эксплуатационными характеристиками, низкой стоимостью и одновременно высокой надежностью, чего нельзя сказать о других приборах.

Бесконтактный выключатель (индуктивный датчик) работает по следующим принципам. Входящий в состав производит электромагнитное поле, которое взаимодействует с объектом. Необходимую длительность сигнала управления и гистерезис при переключении обеспечивает триггер. Усилитель позволяет увеличить до необходимого значения амплитуду сигнала.

Расположенный в датчике световой индикатор обеспечивает оперативность настройки, контроль работоспособности и показывает состояние выключателя. Для защиты от проникновения в устройство воды и твердых частиц используется компаунд. Корпус изделия позволяет монтировать индуктивный и защищает приспособление от механических воздействий. Его изготавливают из полиамида или латуни, комплектуя метизными компонентами.

В процессе работы устройства при подаче напряжения генератора создается переменное магнитное поле, которое располагается перед активной поверхностью выключателя. При попадании в зону чувствительности объекта воздействия происходит снижение качества контура и амплитуды колебаний. В результате происходит срабатывание триггера и изменяется состояние выхода выключателя.

Индуктивный датчик имеет некоторые особенности применения. Он может распознавать различные группы металлов, благодаря отсутствию износа и механического воздействия является долговечным приспособлением. Устройства комплектуют с помощью механизмов защиты от короткого замыкания и перегрузок.

Они имеют стойкость к высокому давлению, впускаются в различных вариантах для применения при высоких (до 150 С o) и низких (от - 60 С о) температурах. Индуктивный датчик обладает устойчивостью к активным химическим средам, может иметь аналоговый или дискретный выход для определения положения относительно устройства объекта воздействия.

PS. Платиновый провод при эксплуатации неизбежно загрязняется. Чтобы предотвратить такое загрязнение после того, как двигатель будет выключен, провод на одну секунду накаляется до температуры 1000 С. Вся пыль, которая на него налипла, моментально сгорает.

Терморезисторы изготовляют как из чистых металлов (платина, несколько хуже - медь и никель), так и из полупроводников.

По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивных датчиков состоит в преобразовании линейного перемещения в изменение индуктивности катушки датчика.

Устройство и принцип работы индуктивных датчиков

Индуктивный датчик функционирует следующим образом (на примере датчика частоты вращения):

Принцип действия. В основе работы индуктивных датчиков частоты вращения лежит явление электромагнитной индукции. Датчики выполнены в виде катушек с магнитными сердечниками. При прохождении под сердечником зубца ферромагнитного диска (например, зубца венца маховика коленчатого вала двигателя) магнитный проток датчика изменяется, и в катушке датчика индуцируется электродвижущая сила. Амплитуда импульсов зависит от частоты вращения коленчатого вала и зазора между сердечником и зубцом маховика

Индуктивные преобразователи имеют множество различных конструкций:

а) индуктивный преобразователь переменной длиной воздушного зазора δ.

Характеризуется нелинейной зависимостью L = f(δ).

Такие преобразователи обычно применяют при перемещениях якоря на 0,01 - 5 мм.

б) индуктивный преобразователь с переменным сечением воздушного зазора. Имеет значительно меньшую чувствительностью, но линейную зависимость L = f(δ).

Эти преобразователи используют при перемещениях до 10 - 15 мм.

в) индуктивные преобразователи дифференциальные преобразователи, в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов.

Имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов.

Области применения индуктивных датчиков.

1. Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм.

2. Для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.


Достоинства индуктивных датчиков:

Простота и прочность конструкции, отсутствие скользящих контактов;

Возможность подключения к источникам промышленной частоты;

Относительно большая выходная мощность (до десятков Ватт);

Значительная чувствительность.

Недостатки индуктивных датчиков:

Точность работы зависит от стабильности питающего напряжения по частоте;

Возможна работа только на переменном токе.

Примеры применения индуктивных датчиков:

1. Датчик положения коленчатого вала:

Датчик положения коленчатого вала установлен на кронштейне около шкива привода генератора (см. Фото-2).

Для генерации импульса синхронизации оборотов коленвала на шкиве отсутствуют два зуба (см.Фото-2 и Рис. 1).

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»