Индуктивные датчики. Виды. Устройство. Параметры и применение. Индуктивный датчик – устройство, принцип работы, параметры и классификация Индуктивный датчик уровня

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Индуктивный датчик - это преобразователь параметрического типа, принцип действия которого основан на изменении L или взаимоиндуктивности обмотки с сердечником, вследствие изменения магнитного сопротивления RМ магнитной цепи датчика, в которую входит сердечник.

Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм. Также можно использовать индуктивный датчик для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

В случае измерения давлений, чувствительные элементы могут выполняться в виде упругих мембран, сильфонов, и т. д. Используются они и в качестве датчиков приближения, которые служат для обнаружения различных металлических и неметаллических объектов бесконтактным способом по принципу “да” или “нет”.

Достоинства индуктивных датчиков:

    простота и прочность конструкции, отсутствие скользящих контактов;

    возможность подключения к источникам промышленной частоты;

    относительно большая выходная мощность (до десятков Ватт);

    значительная чувствительность.

Недостатки индуктивных датчиков:

    точность работы зависит от стабильности питающего напряжения по частоте;

    возможна работа только на переменном токе.

Типы индуктивных преобразователей и их конструктивные особенности

По схеме построения индуктивные датчики можно разделить на одинарные и дифференциальные. Одинарный индуктивный датчик содержит одну измерительную ветвь, дифференциальный – две.

В дифференциальном индуктивном датчике при изменении измеряемого параметра одновременно изменяются индуктивности двух одинаковых катушек, причем изменение происходит на одну и ту же величину, но с обратным знаком.

Как известно, :

где W– число витков; Ф – пронизывающий ее магнитный поток; I – проходящий по катушке ток.

Ток связан с МДС соотношением:

Откуда получаем:

где Rm = HL / Ф – магнитное сопротивление индуктивного датчика.

Рассмотрим, например, одинарный индуктивный датчик. В основу его работы положено свойство дросселя с воздушным зазором изменять свою индуктивность при изменении величены воздушного зазора.

Индуктивный датчик состоит из ярма 1, обмотки 2, якоря 3- удерживается пружинами. На обмотку 2 через сопротивление нагрузки Rн подается напряжение питания переменного тока. Ток в цепи нагрузки определяется как:

где rд - активное сопротивление дросселя; L - индуктивность датчика.

Т.к. активное сопротивление цепи величина постоянная, то изменение тока I может происходить только за счет изменения индуктивной составляющей XL=IRн, которая зависит от величены воздушного зазора δ .

Каждому значению δ соответствует определенное значение I, создающего падение напряжения на сопротивлении Rн: Uвых=IRн - представляет собой выходной сигнал датчика. Можно вывести аналитическую зависимость Uвых=f(δ ), при условии что зазор достаточно мал и потоками рассеяния можно пренебречь, и пренебречь магнитным сопротивлением железа Rмж по сравнению с магнитным сопротвлением воздушного зазора Rмв.

Приведем конечное выражение:

В реальных устройствах активное сопротивление цепи намного меньше индуктивного, тогда выражение сводится к виду:

Зависимость Uвых=f(δ) имеет линейный характер (в первом приближении). Реальная характеристика имеет вид:

Отклонение от линейности в начале объясняется принятым допущением Rмж<< Rмв.

При малых d магнитное сопротивление железа соизмеримо с магнитным сопротивлением воздуха.

Отклонение при больших d объясняются тем, что при больших d RL становится соизмеримой с величиной активного сопротивления - Rн+rд.

В целом рассмотренный индуктивный датчик имеет ряд существенных недостатков:

    не меняется фаза тока при изменении направления перемещения;

    при необходимости измерять в обоих направлениях перемещение нужно устанавливать начальный воздушный зазор и, следовательно, ток I0,что неудобно;

    ток в нагрузке зависит от амплитуды и частоты питающего напряжения;

    в процессе работы датчика на якорь действует сила притяжения к магнитопроводу, которая ничем не уравновешивается, и значит вносит погрешность в работу датчика.

Дифференциальные индуктивные датчики представляет собой совокупность двух нереверсивных датчиков и выполняются в виде системы, состоящей из двух магнитопроводов с общим якорем и двумя катушками. Для дифференциальных индуктивных датчиков необходимы два раздельных источника питания, для чего обычно используется разделительный трансформатор 5.

По форме магнитопровода могут быть дифференциально-индуктивные датчики с магнитопроводом Ш-образной формы, набранные из мостов электротехнической стали (при частотах выше 1000Гц применяются железоникелевые сплавы - пермолой), и цилиндрические со сплошным магнитопроводом круглого сечения. Выбор формы датчика зависит от конструктивного сочетания его с контролируемым устройством. Применение Ш-образного магнитопровода обусловлено удобством сборки катушки и уменьшением габаритов датчика.

Для питания дифференциально-индуктивного датчика используют трансформатор 5 с выводом средней точки на вторичной обмотке. Между ним и общим концом обеих катушек включается прибор 4. Воздушный зазор 0,2-0,5 мм.

При среднем положении якоря, когда воздушные зазоры одинаковы, индуктивные сопротивления катушек 3 и 3" одинаковы следовательно величины токов в катушках равны I1=I2 и результирующий ток в приборе равен 0.

При небольшом отклонении якоря в ту или иную сторону под действием контролируемой величены Х меняются величины зазоров и индуктивностей, прибор регистрирует разностный ток I1-I2, он является функцией смещения якоря от среднего положения. Разность токов обычно регистрируется с помощью магнитоэлектрического прибора 4 (микроамперметра) с выпрямительной схемой В на входе.

Характеристика индуктивного датчика имеет вид:

Полярность выходного тока остается неизменной независимо от знака изменения полного сопротивления катушек. При изменении направления отклонения якоря от среднего положения меняется на противоположную (на 180°) фаза тока на выходе датчика. При использовании фазочувствительных выпрямительных схем можно получить индикацию направления перемещения якоря от среднего положения. Характеристика дифференциального индуктивного датчика с ФЧВ имеет вид:

Погрешность преобразования индуктивного датчика

Информативная способность индуктивного датчика в значительной мере определяется его погрешностью преобразования измеряемого параметра. Суммарная погрешность индуктивного датчика складывается из большого числа составляющих погрешностей.

Можно выделить следующие погрешности индуктивного датчика:

1) Погрешность от нелинейности характеристики. Мультипликативная составляющая общей погрешности. Из-за принципа индуктивного преобразования измеряемой величины, лежащего в основе работы индуктивных датчиков, является существенной и в большинстве случаев определяет диапазон измерения датчика. Обязательно подлежит оценке при разработке датчика.

2) Температурная погрешность. Случайная составляющая. Ввиду большого числа зависимых от температуры параметров составных частей датчика составляющая погрешность может достичь больших величин и является существенной. Подлежит оценке при разработке датчика.

3) Погрешность от влияния внешних электромагнитных полей. Случайная составляющая общей погрешности. Возникает из-за индуцирования ЭДС в обмотке датчика внешними полями и из-за изменения магнитных характеристик магнитопровода под действием внешних полей. В производственных помещениях с силовыми электроустановками обнаруживаются магнитные поля с индукцией Тл и частотой в основном 50 Гц.

Поскольку магнитопроводы индуктивных датчиков работают при индукциях 0,1 – 1 Тл, то доля от внешних полей составит 0,05–0,005% даже в случае отсутствия экранирования. Введение экрана и применение дифференциального датчика снижают эту долю примерно на два порядка. Таким образом, погрешность от влияния внешних полей должна приниматься в рассмотрение только при проектировании датчиков малой чувствительности и с невозможностью достаточной экранировки. В большинстве случаев эта составляющая погрешности не является существенной.

4) Погрешность от магнитоупругого эффекта. Возникает из-за нестабильности деформаций магнитопровода при сборке датчика (аддитивная составляющая) и из-за изменения деформаций в процессе эксплуатации датчика (случайная составляющая). Расчеты с учетом наличия зазоров в магнитопроводе показывают, что влияние нестабильности механических напряжений в магнитопроводе вызывает нестабильность выходного сигнала датчика порядка, и в большинстве случаев эта составляющая может специально не учитываться.

5) Погрешность от тензометрического эффекта обмотки. Случайная составляющая. При намотке катушки датчика в проводе создаются механические напряжения. Изменение этих механических напряжений в процессе эксплуатации датчика ведет к изменению сопротивления катушки постоянному току и, следовательно, к изменению выходного сигнала датчика. Обычно для правильно спроектированных датчиков, т. е. эту составляющую не следует специально учитывать.

6) Погрешность от соединительного кабеля. Возникает из-за нестабильности электрического сопротивления кабеля под действием температуры или деформаций и из-за наводок ЭДС в кабеле под действием внешних полей. Является случайной составляющей погрешности. При нестабильности собственного сопротивления кабеля погрешность выходного сигнала датчика. Длина соединительных кабелей составляет 1–3 м и редко больше. При выполнении кабеля из медного провода сечением сопротивление кабеля менее 0,9 Ом, нестабильность сопротивления. Поскольку полное сопротивление датчика обычно больше 100 Ом, погрешность выходного сигнала датчика может составить величину. Следовательно, для датчиков, имеющих малое сопротивление в рабочем режиме, погрешность следует оценивать. В остальных случаях она не является существенной.

7) Конструктивные погрешности. Возникают под действием следующих причин: влияние измерительного усилия на деформации деталей датчика (аддитивная), влияние перепада измерительного усилия на нестабильность деформаций (мультипликативная), влияние направляющих измерительного стержня на передачу измерительного импульса (мультипликативная), нестабильность передачи измерительного импульса вследствие зазоров и люфтов подвижных частей (случайная). Конструктивные погрешности в первую очередь определяются недостатками в конструкции механических элементов датчика и не являются специфическими для индуктивных датчиков. Оценка этих погрешностей производится по известным способам оценки погрешностей кинематических передач измерительных устройств.

8) Технологические погрешности. Возникают вследствие технологических отклонений взаимного положения деталей датчика (аддитивная), разброса параметров деталей и обмоток при изготовлении (аддитивная), влияния технологических зазоров и натягов в соединении деталей и в направляющих (случайная).

Технологические погрешности изготовления механических элементов конструкции датчика также не являются специфическими для индуктивного датчика, их оценка производится обычными для механических измерительных устройств способами. Погрешности изготовления магнитопровода и катушек датчика ведут к разбросу параметров датчиков и к затруднениям, возникающим при обеспечении взаимозаменяемости последних.

9) Погрешность от старения датчика. Эта составляющая погрешности вызывается, во-первых, износом подвижных элементов конструкции датчика и, во-вторых, изменением во времени электромагнитных характеристик магнитопровода датчика. Погрешность следует рассматривать как случайную. При оценке погрешности от износа во внимание принимается кинематический расчет механизма датчика в каждом конкретном случае. На стадии конструирования датчика в этом случае целесообразно задавать срок службы датчика в нормальных для него условиях эксплуатации, за время которого дополнительная погрешность от износа не превысит заданной величины.

Электромагнитные свойства материалов изменяются во времени.

В большинстве случаев выраженные процессы изменения электромагнитных характеристик заканчиваются в течение первых 200 часов после термообработки и размагничивания магнитопровода. В дальнейшем они остаются практически постоянными и не играют существенной роли в общей погрешности индуктивного датчика.

Проведенное выше рассмотрение составляющих погрешности индуктивного датчика дает возможность оценить их роль в формировании общей погрешности датчика. В большинстве случаев определяющими являются погрешность от нелинейности характеристики и температурная погрешность индуктивного преобразователя.

Электронные датчики (измерители) – важная составляющая в автоматизации любых технологических процессов и в управлении различными машинами и механизмами. С помощью электронных устройств можно получить полную информацию о параметрах контролируемого оборудования.

Принцип работы любого электронного датчика построен на преобразовании контролируемых показателей в сигнал, который передается для дальнейшей обработки управляющим устройством. Возможно измерение любых величин – температуры, давления, электрического напряжения и силы тока, силы света и других показателей.

Популярность электронных измерителей обуславливается рядом конструкционных особенностей, в частности возможно:

  • передать измеряемые параметры на практически любое расстояние;
  • преобразовать показатели в цифровой код для достижения высокой чувствительности и быстродействия;
  • осуществлять передачу данных с максимально высокой скоростью.

По принципу действия электронные датчики разделяют на несколько категорий в зависимости от принципа действия. Одними из самых востребованных считаются:

  • емкостные;
  • индуктивные;
  • оптические.

Каждый из вариантов обладает определенными преимуществами, которые определяют оптимальную сферу его применения. Принцип работы любого типа измерителя может различаться в зависимости от конструкции и используемого контролирующего оборудования.

ЕМКОСТНЫЕ ДАТЧИКИ

Принцип работы электронного емкостного датчика построен на изменении емкости плоского или цилиндрического конденсатора в зависимости от перемещения одной из обкладок. Также учитывается такой показатель как диэлектрическая проницаемость среды между обкладок. Одно из преимуществ подобных устройств – очень простая конструкция, которая позволяет достичь хороших показателей прочности и надежности.

Также измерители этого типа не подвержены искажениям показателей при перепадах температуры. Единственно условие для точных показателей – защита от пыли, влажности и коррозии.

Емкостные датчики широко используются в самых разнообразных отраслях. Простые в изготовлении приборы отличаются низкой себестоимостью производства, при этом обладают длительным сроком эксплуатации и высокой чувствительностью.

В зависимости от исполнения устройства делятся на одноемкостные и духъемкостные. Второй вариант более сложен в изготовлении, но отличается повышенной точностью измерений.

Область применения.

Наиболее часто емкостные датчики используют для измерения линейных и угловых перемещений, причем конструкция устройства может различаться в зависимости от метода измерения (меняется площадь электродов, либо зазор между ними). Для измерения угловых перемещений используют датчики с переменной площадью обкладок конденсатора.

Также емкостные преобразователи используют для измерения давления. Конструкция предусматривает наличие одного электрода с диафрагмой, которая под действием давления изгибается, меняя емкость конденсатора, что фиксируется измерительной схемой.

Таким образом, емкостные измерители могут использоваться в любых системах управления и регулирования. В энергетике, машиностроении, строительстве обычно используют датчики линейных и угловых перемещений. Емкостные преобразователи уровня наиболее эффективны при работе с сыпучими материалами и жидкостями, и часто используются в химической и пищевой промышленности.

Электронные емкостные датчики применяются для точного измерения влажности воздуха, толщины диэлектриков, различных деформаций, линейных и угловых ускорений, гарантируя точность показателей в самых разных условиях.

ИНДУКТИВНЫЕ ДАТЧИКИ

Бесконтактные индуктивные датчики работают по принципу изменения показателя индуктивности катушки с сердечником. Ключевая особенность измерителей данного типа – они реагируют только на изменение местоположения металлических предметов. Металл оказывает непосредственное влияние на электромагнитное поле катушки, что приводит к срабатыванию датчика.

Таким образом, с помощью индуктивного датчика можно эффективно отслеживать положение металлических предметов в пространстве. Это позволяет использовать индуктивные измерители в любой отрасли промышленности, где требуется наблюдение за положением различных конструктивных элементов.

Одна из интересных особенностей датчика – электромагнитное поле изменяется по-разному, в зависимости от вида металла, это несколько расширяет сферу применения устройств.

Индуктивные датчики обладают рядом преимуществ, из которых отдельного внимания заслуживает отсутствие подвижных частей, что существенно повышает надежность и прочность конструкции. Также датчики можно подключать к промышленным источникам напряжения, а принцип работы измерителя гарантирует высокую чувствительность.

Индуктивные датчики изготавливают в нескольких форм-факторах, для максимально удобной установки и эксплуатации, например двойные измерители (две катушки в одном корпусе).

Область применения.

Сфера использования индуктивных измерителей – автоматизация в любой сфере промышленности. Простой пример – устройство можно использовать в качестве альтернативы концевому выключателю, при этом будет увеличена скорость срабатывания. Датчики выполняют в пылевлагозащитном корпусе для эксплуатации в самых сложных условиях.

Устройства можно использовать для измерения самых различных величин – для этого используют преобразователи измеряемого показателя в величину перемещения, которая и фиксируется устройством.

ОПТИЧЕСКИЕ ДАТЧИКИ

Бесконтактные электронные оптические датчики – один из самых востребованных типов измерителей в отраслях промышленности, где требуется эффективное позиционирование любых объектов с максимальной точностью.

Принцип работы данного типа измерителей построен на фиксации изменения светового потока, при прохождении через него объекта. Самая простая схема устройства это излучатель (светодиод) и фотоприемник, преобразующий световое излучение в электрический сигнал.

В современных оптических измерителях используется современная электронная система кодирования, позволяющая исключить влияние посторонних источников света (защита от ложных срабатываний).

Конструктивно, оптические измерители могут выполняться как в отдельных корпусах для излучателя и приемника, так и в одном, в зависимости от принципа работы устройства и области его применения. Корпус дополнительно обеспечивает защиту от пыли и влаги (для работы при низких температурах используют специальные термокожухи).

Оптические датчики классифицируются в зависимости от схемы работы. Самый распространенный тип – барьерный, состоящий из излучателя и приемника, расположенных строго напротив друг друга. Когда постоянный световой поток прерывается объектом, устройство подает соответствующий сигнал.

Второй востребованный тип – диффузный оптический измеритель, в котором излучатель и фотоприемник располагаются в одном корпусе. Принцип действия основан на отражение луча от объекта. Отраженный световой поток улавливается фотоприемником, после чего происходит срабатывание электроники.

Третий вариант – рефлекторный оптический датчик. Как и в диффузном измерителе, излучатель и приемник конструктивно выполнены в одном корпусе, но световой поток отражается от специального рефлектора.

Использование.

Оптические датчики широко применяются в системах автоматизированного управления и служат для обнаружения предметов и их пересчета. Относительно простая конструкция обуславливает надежность и высокую точность измерения. Кодированный световой сигнал обеспечивает защиту от внешних факторов, а электроника позволяет определять не только наличие объектов, но и определять их свойства (габариты, прозрачность и т.д.).

Широкое распространение оптические устройства получили в охранных системах, где используются в качестве эффективных датчиков движения. Вне зависимости от типа, электронные датчики это лучший вариант для современных систем управления и автоматического оборудования.

Высокая точность и скорость измерения обеспечивают надлежащее функционирование оборудования с минимальными отклонениями. При этом большинство электронных измерителей бесконтактные, что в несколько раз повышает надежность устройств и гарантирует длительный срок эксплуатации даже в сложных производственных условиях.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, и другие датчики применяются очень широко.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) - понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет – сигнал на контроллер или рвёт . Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами .

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – .

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам .

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный . Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм . Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков , на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – . Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Индуктивный датчик - это преобразователь параметрического типа, принцип действия которого основан на изменении индуктивности L или взаимоиндуктивности обмотки с сердечником, вследствие изменения магнитного сопротивления R М магнитной цепи датчика, в которую входит сердечник.

Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1мкм до 20мм. Также можно использовать индуктивный датчик для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю. В случае измерения давлений, чувствительные элементы могут выполняться в виде упругих мембран, сильфонов, и т. д. Используются они и в качестве датчиков приближения, которые служат для обнаружения различных металлических и неметаллических объектов бесконтактным способом по принципу “да” или “нет”.

Возможные области применения датчиков чрезвычайно разнообразны, можно выделить лишь отдельные сферы:

    промышленная техника измерения и регулирования,

    робототехника,

    автомобилестроение,

    бытовая техника,

    медицинская техника.

Достоинства :

Простота и прочность конструкции, отсутствие скользящих контактов;

Возможность подключения к источникам промышленной частоты;

Относительно большая выходная мощность (до десятков Ватт);

Значительная чувствительность.

Недостатки :

- точность работы зависит от стабильности питающего напряжения по частоте;

Возможна работа только на переменном токе.

Типы преобразователей и их конструктивные особенности

По схеме построения датчики можно разделить на одинарные и дифференциальные. Одинарный датчик содержит одну измерительную ветвь, дифференциальный – две.

Тип датчика

Переменный зазор

Переменная площадь зазора

Соленоидные

Индуктивные

Одинарные

Дифференциальные

Взаимоиндуктивные

Одинарные

Дифференциальные

В дифференциальном датчике при изменении измеряемого параметра одновременно изменяются индуктивности двух одинаковых катушек, причем изменение происходит на одну и ту же величину, но с обратным знаком.

Как известно, индуктивность катушки:

,

где W число витков; Ф – пронизывающий ее магнитный поток; – проходящий по катушке ток. Ток связан с МДС
соотношением:

.

Откуда получаем:

,

где
– магнитное сопротивление преобразователя.

Рассмотрим, например, одинарный индуктивный датчик. В основу его работы положено свойство дросселя с воздушным зазором изменять свою индуктивность при изменении величены воздушного зазора.

Состоит из ярма 1, обмотки 2, якоря 3- удерживается пружинами.

На обмотку 2 через сопротивление нагрузки R н подается напряжение питания переменного тока.

Ток в цепи нагрузки определяется как:

где r д - активное сопротивление дросселя;

L - индуктивность датчика.

Т.к. активное сопротивление цепи величина постоянная, то изменение тока I может происходить только за счет изменения индуктивной составляющей

которая зависит от величены воздушного зазора .

Т.о. , каждому значению  соответствует определенное значение I , создающего падение напряжения на сопротивлении R н:

U вых =IR н -

представляет собой выходной сигнал датчика.

Можно вывести аналитическую зависимость U вых =f(, при условии что зазор достаточно мал и потоками рассеяния можно пренебречь, и пренебречь магнитным сопротивлением железа R мж по сравнению с магнитным сопротвлением воздушного зазора R мв .

Приведем конечное выражение:

В реальных устройствах активное сопротивление цепи намного меньше индуктивного, тогда выражение сводится к виду:

Т.о. зависимость U вых =f(  имеет линейный характер (в первом приближении).

Реальная характеристика имеет вид :

Отклонение от линейности в начале объясняется принятым допущением R мж  R мв .

При малых магнитное сопротивление железа соизмеримо с магнитным сопротивлением воздуха.

Отклонение при больших объясняются тем, что при больших R L становится соизмеримой с величиной активного сопротивления - R н +r д .

В целом рассмотренный датчик имеет ряд существенных недостатков:

Не меняется фаза тока при изменении направления перемещения;

При необходимости измерять в обоих направлениях перемещение нужно устанавливать начальный воздушный зазор и, следовательно, ток I 0 ,что неудобно;

Ток в нагрузке зависит от амплитуды и частоты питающего напряжения;

В процессе работы датчика на якорь действует сила притяжения к магнитопроводу, которая ничем не уравновешивается, и значит вносит погрешность в работу датчика.

Дифференциальные (реверсивные) индуктивные датчики (ДИД)

ДИД представляет собой совокупность двух нереверсивных датчиков и выполняются в виде системы, состоящей из двух магнитопроводов с общим якорем и двумя катушками. Для ДИД необходимы два раздельных источника питания, для чего обычно используется разделительный трансформатор 5.

По форме магнитопровода могут быть ДИД с магнитопроводом Ш- образной формы, набранные из мостов электротехнической стали (при частотах выше 1000Гц применяются железо- никелевые сплавы- пермолой), и цилиндрические- со сплошным магнитопроводом круглого сечения. Выбор формы датчика зависит от конструктивного сочетания его с контролируемым устройством. Применение Ш- образного магнитопровода обусловлено удобством сборки катушки и уменьшением габаритов датчика.

Для питания ДИД используют трансформатор 5 с выводом средней точки на вторичной обмотке. Между ним и общим концом обеих катушек включается прибор 4. Воздушный зазор 0,2-0,5 мм.

При среднем положении якоря, когда воздушные зазоры с обеих? одинаковы, индуктивные сопротивления катушек 3 и 3 одинаковы следовательно величины токов в катушках равныI 1 =I 2 и результирующий ток в приборе равен 0.

При небольшом отклонении якоря в ту или иную сторону под действием контролируемой величены Х меняются величины зазоров и индуктивностей, прибор регистрирует разностный токI 1 -I 2 ,он является функцией смещения якоря от среднего положения. Разность токов обычно регистрируется с помощью магнитоэлектрического прибора 4 (микроамперметра) с выпрямительной схемой В на входе.

Характеристика датчика имеет вид:

Полярность выходного тока остается неизменной независимо от знака изменения полного сопротивления катушек(для схемы Рис.1). При изменении направления отклонения якоря от среднего положения меняется на противоположную (на 180°) фаза тока на выходе датчика. При использовании фазочувствительных выпрямительных схем можно получить индикацию направления перемещения якоря от среднего положения.

Характеристика ДИД с ФЧВ имеет вид:

Погрешность преобразования индуктивного датчика

Информативная способность индуктивного датчика в значитель­ной мере определяется его погрешностью преобразования измеряе­мого параметра. Суммарная погрешность индуктивного датчика складывается из большого числа составляющих погрешностей. Можно выделить следующие погрешности индуктивного датчика:

1) Погрешность от нелинейности характеристики. Мультиплика­тивная составляющая общей погрешности. Из-за принципа индук­тивного преобразования измеряемой величины, лежащего в основе работы индуктивных датчиков, является существенной и в боль­шинстве случаев определяет диапазон измерения датчика. Обязательно подлежит оценке при разработке датчика.

2) Температурная погрешность. Случайная составляющая. Ввиду большого числа зависимых от температуры параметров составных частей датчика составляющая погрешность может достичь больших величин и является существенной. Подлежит оценке при разработке датчика.

3) Погрешность от влияния внешних электромагнитных полей. Случайная составляющая общей погрешности. Возникает из-за индуцирования ЭДС в обмотке датчика внешними полями и из-за изменения магнитных характеристик магнитопровода под действием внешних полей. В произ­водственных помещениях с силовыми электроустановками обнару­живаются магнитные поля с индукцией
Тл и часто­той в основном 50 Гц. Поскольку магнитопроводы индуктивных датчиков работают при индукциях 0,1 – 1 Тл, то доля от внешних полей составит 0,05–0,005% даже в случае отсутствия экранирования. Введение экрана и применение дифференциального датчика снижают эту долю примерно на два порядка. Таким образом, погрешность от влияния внешних полей должна приниматься в рассмотрение только при проектировании датчиков малой чувствительности и с невозможностью достаточной экрани­ровки. В большинстве случаев эта составляющая погрешности не является существенной.

4) Погрешность от магнитоупругого эффекта. Возникает из-за нестабильности деформаций магнитопровода при сборке датчика (аддитивная составляющая) и из-за изменения деформаций в про­цессе эксплуатации датчика (случайная составляющая). Расчеты с учетом наличия зазоров в магнитопроводе показывают, что влияние неста­бильности механических напряжений в магнитопроводе вызывает нестабильность выходного сигнала датчика порядка
, и в большинстве случаев эта составляющая может специально не учитываться.

5) Погрешность от тензометрического эффекта обмотки. Случай­ная составляющая. При намотке катушки датчика в проводе созда­ются механические напряжения. Изменение этих механических напряжений в процессе эксплуатации датчика ведет к изменению сопротивления катушки постоянному току и, следовательно, к из­менению выходного сигнала датчика. Обычно для правильно спроектированных датчиков , т. е. эту составляющую не следует специально учитывать.

6) Погрешность от соединительного кабеля. Возникает из-за нестабильности электрического сопротивления кабеля под действи­ем температуры или деформаций и из-за наводок ЭДС в кабеле под действием внешних полей. Является случайной составляющей погрешности. При нестабильности собственного сопротивления ка­беля погрешность выходного сигнала датчика
. Длина соединительных кабелей составляет 1–3 м и редко больше. При выполнении кабеля из медного провода сечением
сопротивление кабеля менее 0,9 Ом, нестабильность сопротивления
. Поскольку полное сопротивление датчика обычно больше 100 Ом, погрешность выходного сигнала датчика может составить величину
. Следовательно, для датчиков, имеющих малое сопротивление в рабочем режиме, погрешность следует оце­нивать. В остальных случаях она не является существенной.

7) Конструктивные погрешности. Возникают под действием сле­дующих причин: влияние измерительного усилия на деформации деталей датчика (аддитивная), влияние перепада измерительного усилия на нестабильность деформаций (мультипликативная), влия­ние направляющих измерительного стержня на передачу измери­тельного импульса (мультипликативная), нестабильность передачи измерительного импульса вследствие зазоров и люфтов подвижных частей (случайная). Конструктивные погрешности в первую очередь определяются недостатками в конструкции механических элемен­тов датчика и не являются специфическими для индуктивных дат­чиков. Оценка этих погрешностей производится по известным спо­собам оценки погрешностей кинематических передач измерительных устройств.

8) Технологические погрешности. Возникают вследствие техно­логических отклонений взаимного положения деталей датчика (ад­дитивная), разброса параметров деталей и обмоток при изготов­лении (аддитивная), влияния технологических зазоров и натягов в соединении деталей и в направляющих (случайная).

Технологи­ческие погрешности изготовления механических элементов конструк­ции датчика также не являются специфическими для индуктивного датчика, их оценка производится обычными для механических измерительных устройств способами. Погрешности изготовления магнитопровода и катушек датчика ведут к разбросу параметров датчиков и к затруднениям, возни­кающим при обеспечении взаимозаменяемости последних.

9) Погрешность от старения датчика. Эта составляющая погреш­ности вызывается, во-первых, износом подвижных элементов кон­струкции датчика и, во-вторых, изменением во времени электро­магнитных характеристик магнитопровода датчика. Погрешность следует рассматривать как случайную. При оценке погрешности от износа во внимание принимается кинематический расчет механизма датчика в каждом конкретном случае. На стадии конструирования датчика в этом случае целе­сообразно задавать срок службы датчика в нормальных для него условиях эксплуатации, за время которого дополнительная погреш­ность от износа не превысит заданной величины.

Электромагнитные свойства материалов изменяются во времени.

В большинстве случаев выраженные про­цессы изменения электромагнитных характеристик заканчиваются в течение первых 200 часов после термообработки и размагничивания магнитопровода. В дальнейшем они остаются практически посто­янными и не играют существенной роли в общей погрешности дат­чика.

Проведенное выше рассмотрение составляющих погрешности индуктивного датчика дает возможность оценить их роль в форми­ровании общей погрешности датчика. В большинстве случаев опре­деляющими являются погрешность от нелинейности характеристики и температурная погрешность преобразователя.

Расчет индуктивных датчиков перемещений

Целью расчета индуктивного измерительного преобразователя является определение его конструктивных параметров по заданным метрологическим характеристикам или расчет метрологических ха­рактеристик данной конструкции индуктивного измерительного пре­образователя.

Эти расчеты связаны с теорией электромагнитных це­пей. Основными метрологическими характеристиками индуктивного измерительного преобразователя являются:

1) диапазон измерения с допустимой погрешностью
;

2) чувствительность преобразования (относительная)
;

3) погрешность преобразования (относительная) .

В качестве конструктивных параметров индуктивного преобра­зователя, определяющих его метрологические характеристики, не­обходимо учитывать геометрические размеры магнитопровода и его материал, геометрические размеры и число витков катушки преоб­разователя.

С точки зрения расчета индуктивные измерительные преобразо­ватели можно разделить на три вида: преобразователи с переменной длиной немагнитных зазоров в магнитопроводе, преобразователи с переменной площадью немагнитных зазоров в магнитопроводе и соленоидные преобра­зователи.

Выходной величиной индуктивного измерительного преобразователя является его полное сопротивление, модуль которого определяется зависимостью
, где
– добротность преобразователя.

Индуктивность преобразователя в первую очередь зависит от конструктивных параметров преобразователя и электромагнитных характеристик его элементов (в рабочем диапазоне частот). Величиныисущественно зависят ещё и от режима работы преобразователя и, в частности, от частоты. В связи с этим модуль полного сопротивления преобразователябудет определенной величиной только для фиксированного режима работы преобразователя.

С другой стороны, характерной особенностью добротности является слабая зависимость этой величины (в рабочем диапазоне режимов преобразователя) от режима работы преобразователя и входной величины.

Приведенные рассуждения показывают целесообразность применения для характеристики индуктивного измерительного преобразователя двух достаточно стабильных величин и.

При этом с небольшой погрешностью результата в практических случаях можно принять
и вместо зависимости
рассматривать зависимость
, приняв последнюю в качестве функции преобразования индуктивного измерительного преобразователя.

Применяемые методы расчета индуктивных преобразователей базируются на теории магнитных цепей с зазорами. Исходными являются следующие расчетные соотношения: магнитный поток в магнитопроводе
, где
– намагничивающая сила обмотки преобразователя,– магнитное комплексное сопротивление магнитопроводов и зазоров;

индуктивность преобразователя
, где
– число витков обмотки преобразователя.

Решение задачи сводится к определению магнитного сопротивления магнитной цепи. Последнее складывается из магнитного сопротивления ферромагнитных и немагнитных участков цепи
, где,
– полное активное магнитное сопротивление и полное реактивное магнитное сопротивление.

Для нахождения и
предлагаются следующие соотношения:

;
,

где
,
– удельное активное и реактивное магнитные сопротивления,,– длина и площадь сечения однородных участков магнитопровода.

Удельное активное сопротивление
учитывает магнитные свойства вещества магнитопровода и определяется из соотношения

.

Удельное реактивное магнитное сопротивление
учитывает потери в магнитопроводе, в первую очередь от вихревых токов, в значительной мере определяется не только материалом магнитопровода, но и его конструкцией. При слабо выраженном поверхностном эффекте в магнитопроводе преобразователя допустимо при расчете принимать
. С учетом сказанного при практических расчетах часто принимают

, где,– длина и площадь сечения немагнитных зазоров.

Схемы включения индуктивных датчиков

Схема включения индуктивного датчика перемещений осущест­вляет его согласование с электрическим вторичным измерительным преобразователем и преобразует изменение полного сопротивления датчика в изменение электрического тока или напряжения. Электри­ческие вторичные измерительные преобразователи индуктивных из­мерительных устройств являются общими для самых разнообраз­ных электрических устройств, предназначенных для измерения раз­личных неэлектрических величин.

В любую схему включения индуктивный датчик размера мо­жет входить либо непосредственно, либо в составе резонансного контура параллельного или последовательного. Применение вклю­чения датчика в резонансный контур позволяет в ряде случаев по­высить чувствительность измерения и улучшить линейность харак­теристики датчика. С этой точки зрения все схемы включения - ин­дуктивных датчиков можно разделить на безрезонансные, в кото­рых индуктивный датчик включен в схему непосредственно, и резо­нансные, в которых индуктивный датчик входит в схему в составе колебательного контура.

Независимо от предыдущего деления применяют следующие типы схем включения индуктивных датчиков:

    последовательную (схема генератора тока);

    схему делителя напряжения;

    мостовую;

    частотную;

    трансформаторную.

Применяемый тип схемы зависит от того, какой датчик при­меняется - индуктивный или взаимоиндуктивный. Кроме того, вид схемы одного и того же типа изменяется при включении простого и дифференциального датчика.

Последовательные схемы включения

В

Рисунок 4.8.1.1

арианты последователь­ных схем показаны на рисунке 4.8.1.1. Индуктивный датчикпитается переменным напряжением. Величина тока в датчике при по­стоянной величине питающего напряжения будет зависеть от его сопротивления:
, где
– круговая частота питания схемы,
– добротность датчика,– сопротивление потерь датчика,– частота питающего датчик тока.

Чувствительность преобразования последовательной схемы

.

Изменение тока (выходной сигнал) при изменении полного со­противления датчика

,

где
– коэффициент преобразования схемы включения.

Схема чувствительна к изменению напряжения питания и частоты питающего тока Используя простую последовательную схему включения индук­тивного датчика, нельзя получить высокую чувствительность и точ­ность измерений.

Последовательная схема может быть безрезонансной и резонансной (см. 4.8.1.1 в). В резонансной схеме ток в цепи будет определяться сопротивлением резонансного контура, состоящего из индуктивности датчика и конденсатора. При измененииэто сопротивление меняется, вызывая изменение тока.

Если частота питающего напряжения совпадает с собствен­ной частотой колебательного контура
, то сопротивление последовательного колебательного контура мини­мально, а параллельного – максимально. При изменении индуктивности датчика равенство частот будет нарушено, и сопротивление

последовательного контура будет увеличиваться, а па­раллельного – уменьшаться. Соответствующим образом будет из­меняться и ток в цепи. Чувствительность резонансной последова­тельной схемы в несколько раз выше чувствительности безрезонанс­ной последовательной схемы.

Вариант последовательной схемы для включения дифференци­ального датчика показан на рисунке 4.8.1.2. Каждая половина датчикаипитается переменным током с напряжением. При из­менении измеряемого размера одна индуктивность уменьшается, а другая увеличивается на одну и ту же величину. Соответствующим образом изменяются токи в цепях обмоток датчиков. Эти токи ивыпрямляются диодами
и
и во встречной полярности протекают через измеритель токаА. Измеритель тока будет показывать разницу токов в цепях обмоток и
. При равенстве полных сопротивлений
токи в их цепях будут равны, и амперметрА покажет нуль. При измене­нии измеряемого размера равенство сопротивлений нарушится, и показания амперметра будут отличаться от нуля.

Направление тока через амперметр будет зависеть от того, в цепи какой катушки илиток в данный момент больше.

Такие схемы включения дифференциальных индуктивных дат­чиков, которые реагируют не только на величину смещения изме­рительного стержня из нулевого положения, но и на направление смещения, называют фазочувствительными.

Схемы делителей напряжения

При включении по схеме дели­теля напряжения датчик включается в цепь последова­тельно с некоторым постоянным сопротивлением , которое в об­щем виде может быть комплексным. Добавочным сопротивлением может служить, например, резистор, индуктивность или емкость (см. рис. 4.8.2.1). При питании цепи переменным напряжением, напряжение на дат­чике, измеряемое вольтметромV того или иного типа, будет зави­сеть от полного сопротивления датчика. Если соблюдается условие
, то

,

откуда следует, что напряжение на датчике прямо пропорционально величине его индуктивности.

Чувствительность по напряжению схемы

.

Выходной сигнал схемы включения при изменении полного со­противления датчика

С другой стороны, выходное напряжение схемы делителя напря­жения зависит также от величины напряжения питания и час­тоты питающего тока. Нетрудно убедиться, что
и
; следовательно, стабильность источника питания по часто­те и напряжению определяет погрешность преобразования измери­тельного сигнала схемой делителя напряжения.

Включение дифференциального датчика в схему делителя напря­жения показано на рисунке 4.8.2.2. Обмот­ки датчика иобразуют делитель напряжения, питаемый переменным током.

При изменении индуктивностей обмоток будет из­меняться их полное сопротивление и падение напряжения на обмотках. Это падение напряжения выпрям­ляется диодами
и
. Конден­саторы и служат для сгла­живания пульсаций выпрямленного напряжения, а резисторы ,,являются сопротивлениями на­грузки для выпрямителей.

Показывающий вольтметр V подключен к одноименным полюсам выпрямителей. В этом случае он будет пока­зывать разницу напряжений на обмотках датчика и. Когда индуктивности обмоток равны, равны и их полные сопротивления и падения напряжения на них. Вольтметр при этом покажет нуль. Ре­гулировка нулевых показаний вольтметра при настройке может осу­ществляться переменным резистором.

Мостовые схемы

Весьма широкое распространение для вклю­чения индуктивных датчиков нашла мостовая схема включения в различных вариантах (см. рис. 4.8.3.1). Общий вид мостовых схем включения недиф­ференциального индуктивного датчика показан на рисунке. Если соблюдается условие

где– фазовый угол соответствующего комплексного сопротив­ления, то выходное напряжениеравно нулю, и мост в этом слу­чае сбалансирован или уравновешен. Условие равновесия мостовой схемы формулируется следующим образом: «для равновесия мос­товой схемы необходимо, чтобы произведения модулей комплексных сопротивлений накрест лежащих плеч моста, а также суммы их углов фазовых сдвигов были равны между собой». При изменении индуктивности датчика условие равновесия мос­та нарушается, и выходное напряжение моста пропорционально из­менению индуктивности.

Плечи мостовой схемы в общем случае являются комплексными сопротивлениями и в конкретных схемах включения могут быть реа­лизованы включением резисторов, индуктивностей или емкостей. Пример реализации мостовой схемы приведен на рисунке 4.8.3.1 б). Одним плечом моста является индуктивность датчика , второе плечо – компенсационная индуктивность, третье и четвертое – образова­ны резисторами ,и. Для резисторов фазовый угол
. Для индуктивностей
. В связи с этим удается обеспечить усло­вие равновесия мостовой схемы. Балансировка мостовой схемы для определенного значенияпри настройке осуществляется резисто­ром или изменением компенсационной индуктивности .

Мостовые схемы с компенсационной индуктивностью не всегда удобны при практическом исполнении. В этом отношении проще схемы на резистивно-емкостных элементах (см. рис. 4.8.3.1 в). Конденса­тор введен в схему для того, чтобы можно было обеспечить ра­венство сумм фазовых углов накрест лежащих плеч моста. Регу­лировкой резистора устанавливается требуемый угол фазового сдвига плеча, составленного резисторами , , частично и конденсатором и накрест лежащего по отношению к плечу с . Регулировкой резистора добиваются выполнения условия равен­ства произведений модулей сопротивлений накрест лежащих плеч. Таким образом оба регулировочных элемента и одновремен­но используются для балансировки мостовой схемы.

Мостовая схема используется и для включения дифференци­альных датчиков. В схеме на рисунке 4.8.3.2 а) два плеча моста образованы индуктивностями обмоток дифференциального датчика, а два других резисторами ,и. Поскольку катушки датчика имеют одинаковую конструкцию и одинаковые параметры, то для них углы фазовых сдвигов близки, и второе условие равновесия мостовой схемы обеспечивается автоматически.

Для балансировки мостовой схемы при неравных значениях индуктивностей ив процессе настройки служит резистор, которым добиваются выполнения первого условия равновесия мостовой схемы.

Вмостовой схеме, приведенной на рисунке 4.8.3.2 б), плечами моста являются индуктивности датчика и, а также обмотки тран­сформатора
и резистор . В этой схеме указатель подключен к измерительной диагонали моста через трансформатор
. Такое включение позволяет наилучшим образом согласовать между со­бой выходное сопротивление мостовой схемы и сопротивление из­мерителя для получения наибольшей чувствительности.

Резистор служит для балансировки мостовой схемы при настройке.

На рисунке 4.8.3.2 в), в приведена схема, аналогичная показанной на рисунке 4.8.3.2 а), а, но в данном случае изменено назначение диагоналей моста.

Все рассмотренные мостовые схемы работают в режиме неурав­новешенного моста, при котором изменение индуктивности датчика размера ведет к пропорциональному изменению выходного напря­жения на измерительной диагонали моста.

Выходное напряжение мостовой неуравновешенной схемы

,

где
– относительное изменение полного сопротивления одного плеча (обмотки датчика) мостовой схемы;– коэффициент пре­образования мостовой схемы (плечевой коэффициент).

Величина определяется соотношением углов фазовых сдви­гов комплексных сопротивлений смежных плеч.

Фазовые соотношения смежных плеч моста:

а – синфазные, б – квадратурные, в – противофазные.

С этой точки зрения мостовые схемы разделяются на


Для включения индуктивных датчиков размера на практике применяются только синфазные и квадратурные мостовые схемы, и, следовательно,
.

Выражение записано для модуля выходного напряжения без учета фазового сдвига. Из этого выражения нетрудно видеть, что стабильность выходного напряжения
зависит от стабиль­ности напряжения питания и частоты питания (в последнем случае при изменении частоты изменяется). При этом

,
.

Поскольку в общем виде первое условие равновесия мостовой схемы переменного тока можно записать

,

то функция преобразования уравновешенной мостовой схемы (при одном уравновешивающем плече ) будет иметь вид

и
.

При включении в мостовую схему дифференциального индуктив­ного датчика в выражения и следует подставлять ве­личину
, где
– относительное изменение полного сопро­тивления обмотки половины дифференциального датчика при вход­ном измеряемом перемещении
.

Частотная схема включения

Для преобразования индуктивно­сти датчика в частоту переменного тока применяют генераторные схемы (см. рис. 4.8.4). Основой генераторной схемы является колебатель­ный контур, составленный индуктивностью датчикаи постоян­ной емкостью.

Контур включен в схему электронного генера­тора Г, который генерирует переменное напряжение с частотой, рав­ной собственной частоте колебательного контура.

При изменении индуктивности датчика изменяется частота на выходе генератора, измеряемая частотомером. Частота генератора зависит в основном от индуктивности датчика и не зависит от его сопротивления по­терь (это верно только в первом приближении). Поскольку сопро­тивление потерь датчика обычно в большой степени зависит от различных внешних факторов, то избавление от его влияния на ре­зультаты измерения повышает точность измерений.

Генераторная схема может применяться для включения, как не­дифференциальных датчиков, так и дифференциальных. В последнем случае имеется два колебательных кон­тура, составленных каждой обмоткой датчика и конденсаторами и, и два генератора Г1 и Г2. Частоты с обоих генераторов ипоступают на смеситель, который выделяет разностную частоту. Эта разностная частота, в свою очередь, измеряется частотомером. Подбором емкостейи генераторы настраиваются так, чтобы в одном из крайних положений измерительного стержня дат­чика выполнялось условие
и
. Тогда показания часто­томера будут пропорциональны величине смещения измерительного стержня из крайнего положения.

Чувствительность преобразования частотной схемы включения

и относительная чувствительность

.

Сравнение чувствительности преобразования частотной схемы с чувствительностью других описанных схем показывает, что ее отно­сительная чувствительность в 2 раза ниже, как это следует из фор­мулы.

Трансформаторная схема включения

Взаимоиндуктивные дат­чики включаются по трансформаторной схеме. Трансфор­маторная схема включения недифференциального взаимоиндуктив­ного датчика показана па рисунке 4.8.5. Одна обмотка датчика пи­тается переменным напряжением постоянной величины . За счет магнитной связи между обмотками во второй обмотке наводится ЭДС, которая измеряется соответствующим вольтметром.

Изменение измеряемого размера приводит к изменению связи между обмотками и к изменению ЭДС на вторичной обмотке. Таким образом, ЭДС на выходе вторичной обмотки будет зависеть от из­меряемого размера.

Напряжение на вторичной обмотке
,

где
– взаимная индуктивность первичной и вторичной обмоток; – индуктивность первичной обмотки.

Если принять, что взаимная индуктивность М остается посто­янной, то выходной сигнал схемы включения

,

где
;
.

Последнее выражение справедливо при отсутствии нагрузки в цепи вторичной обмотки. Для цепи питания в этом случае нагрузкой является в основном полное сопротивление первичной обмотки.

Дифференциальная трансформаторная схема от­личается наличием двух вторичных обмоток у датчика. Измеритель­ный вольтметр в этом случае измеряет разность напряжений на обмотках.

Трансформаторная схема включения индуктивных датчиков весьма проста и практически не требует каких-либо дополнительных элементов. Однако конструкция датчика при этом усложняется, появляется потребность в нескольких обмотках и соответствующем количестве соединительных проводов.

Самым распространенным типом устройств в составе существующих АСУ ТП являются индуктивные датчики положения, их количество превышает 90% от всех применяемых дискретных датчиков положения. Любой технологический процесс в практически любой отрасли промышленности (пищевая, машиностроение, нефтегазовая, энергетика) требует отслеживать положение заслонок, приводов, клапанов, деталей и заготовок, подвижных элементов конструкций агрегатов и т.д. в автоматическом режиме.

Повсеместному распространению индуктивных датчиков послужили их надежность, отличные эксплуатационные характеристики и сравнительно низкая стоимость. Основными рабочими характеристиками индуктивных датчиков положения являются: диапазон срабатывания, степень защиты, рабочая температура и частота отклика.

Принцип действия индуктивных датчиков заключается в следующем. При подаче питания на датчик возбуждается первичная обмотка от переменного напряжения резонатор и тем самым создает вблизи себя электромагнитное поле. При помещении в зону действия электромагнитного поля металлического объекта, который, по сути, становится вторичной обмоткой, начинают наводиться токи вихревого характера, так называемые токи Фуко. Такое явление ведет к ухудшению добротности первичной обмотки, что в свою очередь приводит к изменению в сторону уменьшения амплитуды сигнала резонатора, из-за чего срабатывает компаратор (триггер Шмидта), далее сигнал усиливается посредством усилителя и выдается на выход датчика.

Параметры индуктивных датчиков положения и рекомендации по их применению

Чтобы правильно подобрать индуктивный датчик под определенную задачу необходимо знать ряд основных параметров, а также за какие функции эти параметры отвечают.

Наверное, главным параметром, указанным в паспорте на датчик является номинальный диапазон срабатывания . Он обозначается как Sn. Номинальный диапазон срабатывания, хотя и является основным параметром, но практического значения особо не имеет. Так как его значение получается при ряде ограничений связанных с внешними факторами, а именно: температура окружающей среды 20 градусов Цельсия, питающее напряжение 24 В постоянного или же 230 В переменного тока. А в качестве объекта должна использоваться стальная пластина, выполненная из определенной стали, квадратной формы с шириной в 3 раза больше ширины значения Sn и толщиной 1мм. Практическое же значение имеют такие параметры, как эффективный диапазон срабатывания Sr и полезный диапазон срабатывания Su. Значение Sr варьируется в пределах плюс минус 10% от номинального диапазона срабатывания, а измеряется в температурном диапазоне от 18 до 28 градусов Цельсия и при номинальном напряжении питания. Полезный диапазон срабатывания индуктивного датчика варьируется в пределах плюс минус 10% от эффективного и измеряется при напряжении питания равного 85% - 110% от номинального и температуре от -25 до +70 градусов Цельсия. Часто в техническом описании на датчик можно встретить такой параметр, как гарантированная зона (диапазон) срабатывания . Его нижняя граница равна 0, а верхняя значению 0.81Sn. Также важными параметрами индуктивных датчиков положения, влияющими на точность и достоверность измерений, являются гистерезис и повторяемость H и R соответственно. Гистерезисом называют расстояние между самыми дальними точками срабатывания датчика на объект при приближении и удалении последнего. Нормальным считается значение гистерезиса равное 0.2Sr.

Помимо свойств присущих непосредственно самому индуктивному датчику положения на диапазон срабатывания влияют свойства материала объекта, речь идет об электропроводимости и магнитной проницаемости. Для этого было введено понятие коэффициента редукции . Эталонным материалом считается Сталь 37, ее коэффициент редукции равен 1. Для других металлов коэффициент редукции имеет значение меньше 1. Например, нержавейка имеет коэффициент редукции 0.85, а медь всего лишь 0.3. То есть, если объектом срабатывания является медь, то диапазон срабатывания уменьшается до значения равного 0.3Sn .

Напряжение питания датчика

Питание индуктивных датчиков может осуществляться как от источников постоянного тока, так и источников переменного тока. Для постоянного тока характерны диапазоны напряжений: 10-30В, 10-60В и 5-60В. Для переменного тока характерен диапазон: 98-253В. Также существуют индуктивные датчики имеющие универсальное питание, такие датчики можно запитать как от источника постоянного, так и от источника переменного тока.

Номинальный ток нагрузки

Параметр показывает, на какое значение тока рассчитан датчик при действии нагрузки продолжительный интервал времени. Стандартным является значение равное 200мА, но бывают спец исполнения датчиков рассчитанные и на 500мА.

Частота отклика

Параметр показывает, с какой максимальной частотой, выраженной в герцах, датчик может осуществлять переключения. Для большинства промышленных применений хватает частоты отклика равной 1000Гц, а вот поднимать частоту выше 5кГц производителям датчиков нет особого смысла, так как такая частота будет выше, частоты выполнения стандартного цикла промышленного контроллера (ПЛК). Тем самым состояние такого датчика может быть неверно интерпретировано модулем ввода ПЛК.

При выборе датчиков также стоит обратить на степень защиты корпуса от брызг и пыли, и диапазон температуры при котором может работать индуктивный датчик. Стандартными являются степень защиты IP67, а температурный диапазон от минус 25 до плюс 70 градусов Цельсия.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»