Расчет режимов резания для сверления. Сверление отверстий в металле: способы, инструменты, полезные советы. Высокопроизводительные методы работы при сверлении и рассверливании

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
  • 2.1. Кинематические элементы и характеристики резания
  • 2.2. Элементы лезвия инструмента и системы координатных плоскостей
  • 2.3. Геометрические параметры инструмента
  • 2.4. Элементы режима резания
  • 2.5. Элементы срезаемого слоя и стружки
  • 2.6. Свободное и несвободное резание
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 3. Процесс образования стружки при резании
  • 3.1. Пластические деформации материалов при резании
  • 3.2. Классификация стружек. Методы исследования процесса стружкообразования
  • 3.3. Механизм образования сливной стружки
  • 3.4. Наростобразование при резании металлов
  • 3.5. Усадка стружки
  • Относительный сдвиг и коэффициент усадки стружки
  • Зависимость усадки стружки от различных факторов
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 4. Напряжённо-деформированное состояние материала и силы при резании
  • 4.1. Напряжённо-деформированное состояние материала в зоне резания. Система сил
  • 4.2. Факторы, влияющие на касательные напряжения, углы трения и сдвига
  • 4.3. Силы на задней поверхности инструмента
  • 4.4. Система сил, действующих на резец и заготовку
  • 4.5. Факторы, влияющие на силы резания при точении
  • 4.6. Расчёт сил резания при точении
  • 4.7. Измерение сил резания
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Г л а в а 5. Теплообразование и температура в зоне резания
  • 5.1. Образование и распределение тепла при резании. Температура в зоне резания
  • 5.2. Факторы, влияющие на температуру в зоне резания. Оптимальная температура резания
  • 5.3. Экспериментальное исследование тепловых процессов при резании
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 6. Износ и стойкость режущих инструментов
  • 6.1. Виды и причины износа режущих инструментов
  • 6.2. Износ лезвийных инструментов
  • 6.3. Критерии износа и затупления режущих инструментов
  • 6.4. Стойкость инструментов. Допускаемая скорость резания
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Г л а в а 7. Влияние свойств материалов на обрабатываемость резанием
  • 7.1. Характеристики и оценка обрабатываемости материалов
  • 7.2. Обрабатываемость конструкционных материалов
  • 7.3. Методы повышения обрабатываемости материалов
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Г л а в а 8. Формирование геометрических и физико-механических параметров поверхности при резании
  • 8.1. Понятие качества поверхностей деталей
  • 8.2. Механизм образования шероховатости
  • 8.3. Физико-механические свойства поверхностного слоя материала
  • 8.4. Обеспечение эксплуатационных свойств поверхностей деталей при резании
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 9. Процессы сверления, зенкерования и развертывания
  • 9.1. Особенности процесса резания при сверлении, зенкеровании и развертывании
  • 9.2. Геометрические параметры спирального сверла
  • 9.3. Элементы режима и силы резания при сверлении
  • 9.4. Силы резания при сверлении
  • 9.4. Методика расчета режима резания при сверлении
  • 9.5. Процессы зенкерования и развертывания отверстий
  • 9.6. Элементы режима и силы резания при зенкеровании и развертывании
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 10. Процесс фрезерования
  • 10.1. Кинематические особенности процесса фрезерования
  • 10.2. Геометрические элементы режущей части фрезы
  • 10.3. Элементы режима резания и срезаемого слоя при фрезеровании
  • 10.4. Сила резания и мощность фрезерования
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Г л а в а 11. Процесс шлифования
  • 11.1. Особенности процесса резания при шлифовании
  • 11.2. Шлифовальные материалы
  • 11.3. Элементы режима резания при шлифовании
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 12. Процесс резания несвязанным шлифовальным материалом
  • 12.1. Классификация и характеристики методов обработки несвязанным шлифовальным материалом
  • Вибрационный метод обработки деталей
  • Турбоабразивная обработка поверхностей деталей
  • Магнитно-абразивная обработка поверхностей деталей
  • Финишная обработка деталей уплотненным шлифовальным материалом
  • Полирование деталей в среде шлифовального материала
  • 12. 2. Особенности процесса резания несвяэанным абразивным материалом
  • 12.3. Силы и мощность резания при шпиндельной абразивной обработке
  • Интенсивность съема металла
  • Силы и мощность резания
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 13. Особенности обработки пластмасс резанием
  • 13.1. Физические основы процесса резания пластмасс
  • 13.2. Обрабатываемость пластмасс некоторыми способами лезвийной обработки
  • 13.3. Особенности обработки пластмасс на отделочных операциях
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Гл а в а 14. Оптимизация режима резания при обработке деталей
  • 14.1. Графоаналитический метод оптимизации режима резания
  • 2. Выбрать материал и геометрические параметры режущего клина резца.
  • 3. Оптимизировать подачу – s.
  • 4. Рассчитать скорость резания Vр.
  • 5. Рассчитать частоту вращения шпинделя станка и уточнить скорость резания.
  • 7. Скорректировать подачу в зависимости от допустимых режущих свойств инструмента – Sр.
  • 8. Проверить выбранный режим резания по мощности станка.
  • 14.2. Оптимизация режима резания при одноинструментальной обработке на токарном станке с чпу модели 16к20ф3с32
  • 14.3 Оптимизация режима резания при торцовом фрезеровании
  • 14.4. Оптимизация обработки отверстий развертками
  • Основные понятия и термины
  • Вопросы для самоконтроля
  • Заключение
  • Список литературы
  • 9.4. Методика расчета режима резания при сверлении

    Глубина резания при сверленииt =D /2, гдеD – диаметр сверла.

    Подача s . Для получения наибольшей производительности при сверлении выгодно работать с максимально возможной подачей, величина которой определяется прочностью сверла и механизмов станка (механизма подачи и механизма главного движения) и жесткостью технологической системы.

    Расчет подачи с учетом прочности сверла. Наибольшая подача, допускаемая прочностью сверла, определяется следующим образом:

    где K коэффициент безопасности, учитывающий увеличение напряжений в сверле при его затуплении. На практике принимаютK = 2,5 при сверлении стали иK = 4 – при сверлении чугуна.

    Обозначая
    черезC s , а
    черезx s , получим окончательно:

    . (9.22)

    . (9.23)

    Расчет подачи с учетом прочности механизмов сверлильного станка . Максимальная подача, допускаемая механизмом главного движения сверлильного станка, определяется из условия, что максимальный крутящий момент, допускаемый данным механизмом (приводится в паспорте станка), должен быть больше крутящего момента на сверле, т.е.

    ,

    .

    Следовательно, максимальная подача, мм/об, допускаемая механизмом главного движения,

    . (9.24)

    Точно таким же образом можно определить наибольшую подачу, допускаемую прочностью реечного колеса механизма подачи. Если обозначим наибольшую силу, допускаемую прочностью механизма подачи Р рейки (приводится в паспорте станка), то наибольшую подачу, допускаемую прочностью рейки, можно определить исходя из следующего условия:

    ,

    где
    – осевая сила,

    , (9.25)

    откуда наибольшая подача, мм/об, допускаемая прочностью реечного колеса,

    .

    Следовательно, подачу при сверлении необходимо подсчитывать исходя из прочности сверла, а также из значений s 1 иs 2 , допускаемых прочностью механизмов станка.

    Выбор элементов режима резания при сверлении следует производить в следующей последовательности:

    1) определить максимальную допустимую подачу;

    4) проверить соответствие полезной мощности станка и мощности, потребной на сверление (
    );

    Стойкость сверла обычно принимается равной диаметру сверлаТ = D или по справочным данным.

    Скорость резания подсчитывается по формуле

    ,

    откуда расчетное число оборотов шпинделя станка, мин –1 ,

    .

    Частота вращения корректируется по паспорту станка; обычно принимается ближайшее меньшее значение n д.

    При этом действительная скорость резания, м/ мин:

    .

    Крутящий момент при сверлении определяется как:

    .

    Подсчитанный М кр сравнивают с крутящим моментом станкаМ ст на данной ступени чисел оборотов (n ст). Должно быть

    .

    Мощность , кВт, необходимая на резание:

    .

    Потребная мощность главного электродвигателя станка должна быть

    .

    Должно соблюдаться условие

    где N э – эффективная мощность резания.

    Основное (машинное) технологическое время, мин, определяется по формуле

    ,

    где l – глубина сверления, мм;y – величина врезания,
    , мм; ∆ – величина перебега, ∆ = (1…2) мм и половине угла при вершине сверла,L – расчетная длина резания.

    Пример расчета

    На вертикально-сверлильном станке модели 2Н135 сверлят сквозное отверстие диаметром D =28 H 12(+0,21) мм на глубинуl= 120мм. Материал заготовки сталь 45 с временным сопротивлением при растяжении σ в =700МПа (70 кгс/мм 2), заготовка – горячекатаный прокат нормальной точности. СОТС- Укринол-1М (3%). Сверло с двойной заточкой с подточкой поперечной кромки и ленточки. Материал рабочей части спирального сверла-сталь Р6М5 с σ в =850МПа. Углы сверла: 2φ=118 0 ,ψ=55 0 ,α=11 0 ,ω=30 0 .

    Назначаем режим резания:

    1) t =D / 2= 14 мм

    2) для сверления стали с σ в ≤ 80 кгс/мм 2 и диаметре сверла 25…30 мм по таблицам справочника технолога-машиностроителя подача s находится в диапазоне 0,45…0,55 мм/об. Приведенные поправочные коэффициенты на подачу при заданных условиях резания равны единице. Принимаем среднее значение диапазона s=0,5 мм/об. Корректируем подачу по паспортным данным станка в сторону уменьшения: s=0,4 мм/об. Проверяем принятую подачу по осевой составляющей силы резания, допускаемой прочностью механизма подачи станка. Для этого определяем осевую составляющую силы резания

    Для сверления конструкционной стали с σ в =700МПа инструментом из быстрорежущей стали с учетом условий его заточки справочные данные:Ср =68,Х р =1,Ур =0,7.

    Поправочный коэффициент на осевую составляющую силы резания Кр = Км р .

    Км р =
    ;n p =0,75;Км р =
    = 0,93 0,75 =0,95.

    В единицах системы СИ Р 0 =9,81·68·28·4 0,7 0,95 =9404 Н (958,7 кгс).

    Для исключения перегрузки механизма подачи станка, необходимо выполнить условие:

    Р 0 ≤ Р max ,

    где Р max (Р рейки) – максимальное значение осевой составляющей силы резания, допускаемой механизмом подачи станка. По паспортным данным станка 2Н135 Р max =15000 Н. Так как 9404<15000, то назначение подачиs =0,4 мм/об вполне допустимо.

    3) назначаем период стойкости сверла по таблицам справочников. Для сверла диаметром 28 мм при сверлении конструкционной стали инструментом из быстрорежущей стали рекомендуемый Т =50 мин. Допустимый износ сверлаh з =0,8…1,0 мм для резания стали сверлами из быстрорежущей стали приD > 20 мм.

    4) Скорость главного движения резания, допускаемая режущими свойствами сверла

    .

    Коэффициенты и показатели степеней для формулы скорости резания выбираем из справочных таблиц для обработки сквозного отверстия детали из конструкционной углеродистой стали с σв =75 кгс/ мм2 при s> 0,2 мм/об: CV =9,8, xv =0, yv = 0,5, qv =0,4, m=0,2.

    Учитывая поправочные коэффициенты на скорость главного движения резания, определяем K М V .

    K М V = C м
    ;

    C м =1,n v =0,9,K М V =1 ·
    =1,07 0,9 =1,065,K nV =1. Поправочный коэффициент, учитывающий глубину сверления K lV принимается в зависимости от отношенияl/D . Так какl/D = 120/ 28 =4,28, то K lV =0,85.

    Общий поправочный коэффициент на скорость резания K V представляет собой произведение отдельных коэффициентов:

    K V = K М V · K nV · K lV ; K V =1,065·1,0·0,85 =0,905.

    4) частота вращения шпинделя, соответствующая найденной скорости главного движения резания:


    Корректируем частоту вращения шпинделя по паспортным данным станка и устанавливаем действительную частоту вращения:n ст =250 мин -1 .

    5) действительная скорость главного движения резания


    .

    6) Крутящий момент от сил сопротивления резанию при сверлении

    .

    По таблицам справочника : C м =0,0345,q м =2,Ум =0,8.

    Учитывая поправочный коэффициент Кр , определяемКр = Кмр =0,95.

    В единицах СИ крутящий момент принимает следующее значение .

    7) мощность, затрачиваемая на резание


    8) Проверяем, достаточна ли мощность станка. Обработка возможна, если
    4,5·0,8 = 3,6, 3,6 >3,16.

    9) основное время

    При двойной заточке сверла длина врезания (мм) у=0,4 D ; у=0,4·28=11 мм. Перебег сверла Δ =2 мм. Тогда расчетная длина резанияL =120+11+2=133мм.

    А. Выбор подачи

    Подача при сверлении представляет собой перемещение сверла за один его оборот и измеряется в мм/об.

    Величина подачи выбирается в зависимости от диаметра сверла и обрабаты­ваемого материала. Сверло большего диаметра по своей прочности допускает боль­шую подачу. Подача выбирается максимально допустимой с учетом требуемой чис­тоты и точности обработки.

    Технологически допускаемая подача при сверлении спиральными сверлами из быстрорежущей стали и сверлами, оснащенными твердым сплавом, выбирается на основе опыта (см. табл. 1).

    Таблица Подачи при сверлении S, мм/об.

    Сталь, а < 90 кг/мм 2

    Чугун и цветные металлы

    быстро­режущая сталь

    твердый сплав

    быстрорежущая сталь

    твердый сплав

    быстрорежущая сталь

    твердый сплав

    Подачи, приведенные в таблице 1, даны для сверления отверстий с глубиной сверления до трех диаметров.

    При глубине сверления больше ЗД следует вводить поправочный коэффициент к = 0,75 - 0,9.

    В случаях, когда диаметр отверстия превышает 30-40 мм, следует применять рассверливание, деля припуск примерно на две равные части.

    При рассверливании величина подачи увеличивается примерно в полтора -два раза по сравнению с приведенными табличными данными.

    Максимальные значения подач применяют при сверлении глухих отверстий При сверлении сквозных отверстий для всех перечисленных случаев следует брать среднее значение подач. Это уменьшение величины подачи при сквозном сверлении объясняется тем, что при выходе сверла из отверстия вследствие наличия упругих деформаций в шпинделе, механизме подачи станка, в сверле, а также наличии мерт­вого хода шпинделя, фактическая подача может увеличиваться, что приведет к за­еданию сверла и выкрашиванию режущих кромок.

    Б. Скорость резания при сверлении

    В процессе сверления имеют место стесненные условия отвода стружки в связи с ограниченным пространством между стенками отверстия и поверхностью винтовых канавок сверла.

    Выбор скорости резания при сверлении зависит от следующих основных факторов: 1) обрабатываемого материала; 2) материала режущей части сверла; 3) диаметра сверла; 4) подачи; 5) стойкости сверла; 6) глубины просверливаемого отверстия; 7) формы заточки сверла; 8) охлаждения.

    Скорость резания при сверлении в зависимости от основных факторов резания может быть подсчитана по формуле:

    где C v - постоянный коэффициент, характеризующий обрабатываемый мате риал, материал инструмента, геометрию сверла, различные условия обработки (С 12-20);

    Д - диаметр сверла, мм;

    Т - период стойкости инструмента, мин.;

    S - подача, мм/об.;

    t - глубина резания (припуск на сторону), мм.

    В. Основное (технологическое) время

    Основное технологическое время при сверлении, рассверливании, зенкерова нии и развертывании определяется по формуле:

    (2)

    где L - расчетная длина обработки, мм; n - число оборотов инструмента, об./мин.;

    S - осевая подача инструмента, мм/об.

    Расчетная длина L определяется следующей суммой:

    Величина врезания l1 при сверлении будет равна:а при рассверливании, зенкеровании и развертыванииВеличина выхода сверла 1 2 = 1–2мм.

    Лабораторная работа № 6

    Расчёт режимов резания при сверлении

    Цель работы: научиться рассчитывать наиболее оптимальные режимы резания при сверлении по аналитическим формулам.

    1. Глубина резания t , мм. При сверлении глубина резания t = 0,5 D , при рассверливании, зенкеровании и развертывании t = 0,5 (D d ) ,

    где d – начальный диаметр отверстия;

    D – диаметр отверстия после обработки.

    2. Подача s , мм/об. При сверлении отверстий без ограничивающихся факторов выбираем максимально допустимую по прочности сверла подачу (табл.24). При рассверливании отверстий подача, рекомендованная для сверления, может быть увеличена до 2 раз. При наличии ограничивающих факторов подачи при сверлении и рассверливании равны. Их определяют умножением табличного значения подачи на соответствующий поправочный коэффициент, приведенный в примечании к таблице. Полученные значения корректируем по паспорту станка (приложение 3). Подачи при зенкеровании приведены в табл. 25, а при развертывании – в табл.26.

    3. Скорость резания v р , м/мин. Скорость резания при сверлении

    https://pandia.ru/text/80/138/images/image003_138.gif" width="128" height="55">

    Значения коэффициентов С v и показателей степени m , x , y , q приведены для сверления в табл.27, для рассверливания, зенкерования и развертывания – в табл. 28, а значения периода стойкости Т – табл. 30.

    Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

    Кv = Кмv Киv Кιv ,

    где Кмv - коэффициент на обрабатываемый материал (см. табл. 1, 3, 7, 8);

    Киv – коэффициент на инструментальный материал (см. табл. 4);

    Кιv, - коэффициент учитывающий глубину сверления (табл. 29). При рассверливании и зенкеровании литых или штампованных отверстий вводится дополнительно поправочный коэффициент Кп v (см. табл. 2).

    4. Частоту вращения n , об/мин, рассчитывают по формуле

    https://pandia.ru/text/80/138/images/image005_96.gif" width="180" height="51">

    5. Крутящий момент M кр , Н·м, и осевую силу Ро , Н, рассчитывают по формулам:

    при сверлении

    Мкр = 10 См Dqsy Кр;

    Р0 = 10 Ср Dqsy Кр;

    при рассверливании и зенкеровании

    Мкр = 10 См Dq tx sy Кр;

    Р0 = 10 Ср tx sy Кр;

    Значения См и Ср и показателей степени q , x , y приведены в табл. 31.

    Коэффициент Kp , учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением

    Кр = Кмр.

    Значения коэффициента Кмр приведены для стали и чугуна в табл. 11, а для медных и алюминиевых сплавов – в табл. 10.

    Для определения крутящего момента при развертывании каждый зуб инструмента можно рассматривать как расточной резец. Тогда при диаметре инструмента D крутящий момент, H·м,

    ;

    здесь sz – подача, мм на один зуб инструмента, равная s/z ,

    где s – подача, мм/об, z – число зубьев развертки. Значения коэффициентов и показателей степени см. в табл. 22.

    6. Мощность резания Ne , кВт , определяют по формуле:

    где n пр - частота вращения инструмента или заготовки, об/мин,

    Мощность резания не должна превышать эффективную мощность главного привода станка N е < N э (, где N дв - мощность двигателя, h - кпд станка). Если условие не выполняется и N е > N э , снижают скорость резания. Определяют коэффициент перегрузки рассчитывают новое меньшее значение скорости резания https://pandia.ru/text/80/138/images/image011_47.gif" width="75" height="25 src=">, где Рост – осевая сила станка.

    7. Основное время То , мин, рассчитывают по формуле ,

    где L длина рабочего хода инструмента, мм;

    Длина рабочего хода, мм, равна L = l + l 1 + l 2 ,

    где l – длина обрабатываемой поверхности, мм;

    l 1 и l 2 – величины врезания и перебега инструмента, мм (см. приложение 4).

    Таблица 1

    Поправочный коэффициент К мv , учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания.

    Обрабатываемый

    материал

    Расчетная формула

    Серый чугун

    Ковкий чугун

    Примечания: 1. σв и НВ – фактические параметры. Характеризующие обрабатываемый материал, для которого рассчитывается скорость резания.

    2. Коэффициент Кr характеризующий группу стали по обрабатываемости, и показатель степени nv см. в табл.7.

    Таблица 2

    Поправочный коэффициент Кп v , учитывающий влияние состояния поверхности заготовки на скорость резания.

    Таблица 3

    Поправочный коэффициент Км v , учитывающий влияние физико-механических свойств медных и алюминиевых сплавов на скорость резания.

    Таблица 4

    Поправочный коэффициент Киv , учитывающий влияние инструментального материала на скорость резания.

    Обрабатываемый

    материал

    Значения коэффициента Ки v в зависимости от марки

    инструментального материала

    Сталь конструкционная

    Коррозионно-стойкие и жаропрочные стали

    Сталь закаленная

    Н 35 – 50

    Н 51 – 62

    Серый и ковкий чугун

    Сталь, чугун, медные и алюминиевые сплавы

    Вторым после точения, самым распространенным видом механической обработки является сверление. К нему же приравнивается развертывание, зенковка, рассверливание. При расчете режимов резания можно, пренебрегая жесткостью системы обработки, представить, что это одновременное растачивание несколькими резцами, поэтому принцип расчета будет аналогичен токарной обработке. Однако при малых диаметрах сверла, менее 10 мм, режимы резания расчитываются исходя из целостности сверла после обработки. Другими словами, режимы считаются таким образом, чтобы сверло не изломалось, поэтому расчет производится исходя из характеристик прочности инструмента.

    Однако, во время экспериментов с методикой, было выявлена ошибка, в связи с которой скорость резания была слишком высока, это выражалось длительностью сверления, но высокой стойкостью инструмента, и высоким качеством обработки. Плюс это или минус необходимо решать при определенной задаче, поскольку низкие подачи могут вызвать быстрое затупление режущей части (или даже налипание), однако при слишком высоких подачах вероятен излом инструмента, не говоря уже о понижении безопасности обработки.

    С нашей методикой расчета режимов для сверления можно ознакомиться ниже. В соответствующей теме форума можно скачать макрос автоматического расчета режимов резания для сверлильных работ.

    Методика расчета режимов резания при сверлильных работах

    При сверлильных работах рекомендуется задавать режимы исходя из мощности используемого оборудования. Наиболее удобный материал режущего инструмента – быстрорежущая сталь (Р18, Р6М5). Подачи при сверлильных работах вычислять по формуле:

    S - подача, мм/об

    D - диаметр сверла, мм

    С- коэффициент, зависящий от обрабатывемого материала и иных технологических факторов (чистота поверхности, наличие дальнейшей обработки и т.д) (таблица 1)

    Kls - коэффициент на подачу, зависящий от условия выхода стружки (таблица 2)

    Обрабатываемый материал

    НВ

    Группа подач, определяемая технологическими факторами

    Сталь

    ≤160

    0,085

    0,063

    0,042

    160-240

    0,063

    0,047

    0,031

    240-300

    0,046

    0,038

    0,023

    > 300

    0,038

    0,028

    0,019

    Чугун

    ≤ 170

    0,130

    0,097

    0,065

    >170

    0,078

    0,058

    0,039

    Цветные металлы

    Мягкие

    0,170

    0,130

    0,085

    Твердые

    0,130

    0,097

    0,065

    Таблица 1

    I группа подач - сверление глухих отверстий или рассверливание без допуска по 5-му классу точности или под последующее рассверливание

    II группа подач- сверление глухих и сквозных отверстий в деталях нежесткой конструкции, сверление под резьбу и рассверливание под последующую обработку зенкером или развертками

    III группа подач- сверление глухих и сквозных отверстий и рассверливание под дальнейшую обработку

    Длина отверстия в диаметрах до

    Коэффициент Kls

    1.00

    0.95

    0.90

    0.85

    0.80

    0.70

    Таблица 2

    Режимы резания при сверлении

    Затрачиваемая мощность при сверлении зависит от крутящего момента. Крутящий момент вычисляется по формуле:

    Мкр- крутящий момент, воспринимаемый сверлом при резании, Н*м

    См, q , y - коэффициенты на крутящий момент при сверлении, зависящий от условий резания (таблица 3)

    D - диаметр сверла, мм

    S - подача, мм/об

    Кмр- коэффициент на крутящий момент, зависящий от механических свойств материала (таблица 4)

    Обрабатываемый материал

    См

    0,0345

    Серый чугун 190 НВ

    0,021

    Медные сплавы

    0,012

    Алюминиевые сплавы

    0,005

    Таблица 3

    Обрабатываемый материал

    К МР

    Показатель n

    Сталь

    С ≤ 0.6%

    1,75

    1,75

    хромистая сталь

    1,75

    С >0.6%

    1,75

    Чугун серый

    Медные сплавы

    Алюминиевые сплавы

    Таблица 4

    У нормальных сверл диаметром выше 10 мм не возникает опасности излома от чрезмерно большого крутящего момента, так как для этих диаметров наибольшие напряжения, возникающие в сверле, обычно лимитируются скоростью затупления при возрастании скорости резания и подачи. Для сверл диаметра меньше 10 мм, крутящий момент рекомендуется рассчитывать по ф-ле ,

    для обеспечения целостности инструмента.

    Приравняв и можно вычислить максимально возможные подачи для сверл малого диаметра при сверлении заданного материала (таблица 5).

    Обрабатываемый материал

    Сталь

    Чугун

    Медные сплавы

    Алюминиевые сплавы

    Максимально возможная подача, мм/об

    0,01

    0,019

    0,037

    0,11

    Таблица 5

    Для обеспечения жесткости СПИД при сверлении, необходимо устанавливать сверло в патроне с минимальным по возможности вылетом (больше на 3-5 мм чем глубина обрабатываемого отверстия).

    Скорость резания при сверлении вычисляется по формуле:

    Таблица расчетов режимов при сверлении на станке 2А135 в приложении 1.

    Зенкерование и рассверливание

    Подача при зенкеровании и рассверливании рассчитывается аналогично по формуле:

    Крутящий момент рассчитывается по формуле:

    Значения коэффициентов С m , x , y , q выбирать по таблице 6

    Обрабатываемый материал

    См

    Сталь конструкционная углеродистая,

    0,0 9

    1 ,0

    Серый чугун 190 НВ

    0,0 85

    1 ,0

    Медные сплавы

    0,0 31

    0 , 85

    Алюминиевые сплавы

    0,0 2

    0 , 85

    Таблица 6

    D- диаметр сверла

    d- диаметр ранее рассверленного отверстия - подача на обин зуб инструмента (равна s / Z )

    s - подача, мм/об

    Z - число зубьев развертки

    Коэффициенты С p , x , y в таблице 7

    Материал обрабатываемый

    0,75

    Чугун серый 190 НВ

    0,75

    Алюминиевые сплавы

    0,75

    Медные сплавы

    0,66

    Таблица 7

    Скорость резания рассчитывается по формуле:

    Частота вращения вычисляется по формуле:

    Таблица расчетов режимов при развертывании на станке 2А135 в приложении 2.

    При введении методики расчетов в системе ТехноПро рекомендуется для сверления и развертывания, подсчитанные режимы внести в информационную базу данных, тем самым, избегая программирования условия расчета и упрощая работу системы. Для расчета режимов при зенкеровании и рассверливании необходимо спрограммировать условия, используя коэффициенты из таблицы 6.

    Режимы резания при сверлении. Производительность труда при сверлении во многом зависит от скорости вращения сверла и величины подачи, т. е. на какую величину сверло углубляется за один оборот в обрабатываемую деталь.

    Но скорость вращения сверла и подача не могут быть беспредельно увеличены - при слишком большой скорости вращения сверло «сгорит», а при слишком большой подаче сломается.

    Скорость резания выражается формулой

    где v - скорость резания, м/мин; D - диаметр сверла, мм; n - число оборотов шпинделя в минуту; π - число, равное 3,14.

    При выборе скорости резания учитывают свойства обрабатываемого материала и материала сверла, диаметр сверла, величину подачи и условия сверления (глубину сверления, наличие охлаждения и др.).

    Величина подачи определяется с учетом диаметра сверла. Так, например, при обработке стали средней твердости сверлом диаметром 6 мм допускают подачу 0,15 мм/об; при диаметре сверла 12 мм - 0,25 мм/об; при диаметре сверла 20 мм - 0,30 мм/об и т. д.

    Правильный выбор скорости и подачи сверла оказывает большое влияние не только на производительность, ко и на стойкость режущего инструмента и качество обрабатываемого отверстия. Сверло работает лучше при большой скорости резания и малой подаче.

    Число оборотов, скорость и подачу можно определять и по таблицам.

    Уход за сверлильными станками. Сверлильные станки будут работать с требуемой точностью, производительно и безотказно длительное время лишь в том случае, если за ними будет соответствующий уход.

    Уход за сверлильным станком заключается прежде всего в поддержании на рабочем месте чистоты и систематической уборке стружки. Особенно следует оберегать стол от забоин и ржавления. Забоины, остающиеся на столе в результате небрежной работы, снижают точность сверления и ускоряют необходимость проведения ремонта станка.

    Чтобы избежать образования забоин и выработки на столе, детали следует устанавливать аккуратно, без ударов и значительных перемещений по столу. Опорные плоскости, которыми деталь устанавливается на стол, должны быть чистыми и не иметь заусенцев.

    По окончании работы стол станка и его пазы должны быть тщательно очищены от грязи и стружки, протерты сухими концами и смазаны тонким слоем масла для предохранения от ржавления.

    Перед работой необходимо смазать все трущиеся части станка, места смазки и залить масло в масленки.

    Во время работы проверяют рукой нагрев подшипников. Нагрев должен быть терпимым для руки. Во избежание несчастного случая перед проверкой степени нагрева подшипников электродвигатель следует остановить и проверку производить при неработающей ременной или зубчатой передачах. Необходимо также следить за тем, чтобы шестерни станка были всегда надежно ограждены.

    ← Вернуться

    ×
    Вступай в сообщество «page-electric.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «page-electric.ru»