Решение задач алгебраическим способом. Решение арифметических задач

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

§ 1 Способы решения текстовых задач

Существует несколько способов решения текстовых задач:

· арифметический способ - это способ решения текстовой задачи с помощью чисели знаков арифметических действий сложения, вычитания, умножения и деления, то есть с помощью нескольких действий над числами, связанных между собой;

· алгебраический способ - это способ решения текстовой задачи с помощьювведения переменных и составления соответствующего уравнения или неравенства, или системы уравнений или неравенств;

· геометрический способ - это способ решения текстовой задачи с помощью применения геометрических знаний;

· схематический способ - это способ решения текстовой задачи с помощью схем;

· графический способ - это способ решения текстовой задачи с помощью графиков в прямоугольной системе координат.

Каждый из этих способов предполагает перевод условий задачи на язык математики. Это действие математики называют математическим моделированием. Результат этого действия называют математической моделью. При применении различных способов решения получаются различные математические модели. В арифметическом способе математической моделью является числовое выражение, то есть числовой пример с несколькими действиями, а конечный результат вычислений будет решением задачи. В алгебраическом способе математической моделью чаще всего является уравнение, а решение уравнения даёт решение задачи. В геометрическом способе математической моделью может выступать геометрическая фигура, а решение задачи - например, один из найденных элементов этой фигуры. В схематическом способе математической моделью является схема, с помощью которой находят решение задачи. В графическом способе математической моделью является график, построенный по условию задачи. При этом способе решением задачи могут быть координаты определённых точек графиков.

§ 2 Пример решения текстовой задачи арифметическим способом

В этом уроке более подробно рассмотрим арифметический способ решения задачи.

Решить задачу арифметическим способом - это значит найти ответ на главный вопрос задачи посредством выполнения арифметических действий над числовыми данными из условия задачи. Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга количеством действий и последовательностью выполнения этих действий в процессе решения задачи.

Например. Рассмотрим следующую задачу. Три друга Саша, Коля и Витя собирали в лесу грибы. Коля собрал в 2 раза меньше грибов, чем Саша, Витя - на 6 грибов больше, чем Коля. Сколько грибов собрали три друга вместе, если Саша собрал 22 гриба?

Помогает определить правильный ход логических рассуждений краткая запись условий задачи в форме таблицы.

Решим эту задачу по действиям или так называемым способом решения задач по вопросам. Для начала ответим на первый вопрос «Сколько грибов собрал Коля?».

По условию задачи «Коля собрал в 2 раза меньше грибов, чем Саша», значит, чтобы ответить на вопрос, надо 22 разделить на 2. В результате получилось, что Коля собрал 11 грибов. (22:2=11(грибов) - собрал Коля).

Следующим действием ответим на второй вопрос задачи «Сколько грибов собрал Витя?». По условию задачи «Витя собрал на 6 грибов больше, чем Коля», значит, для ответа на вопрос надо к 11-ти прибавить 6. В результате получилось, что Витя собрал 17 грибов.

22+22:2+(22:2+6)=50 грибов собрали три друга вместе.

Умение решать задачи арифметическим способом с помощью числовых выражений говорит о более высоком уровне математической подготовки по сравнению с умением решать текстовые задачи по действиям.

Список использованной литературы:

  1. Г.Н. Тимофеев Математика для поступающих в вузы. Учебное пособие. Текстовые задачи.– Йошкар-Ола: Мар. гос. ун-т, 2006г.
  2. В. Булынин Применение графических методов при решении текстовых задач. – Еженедельная учебно-методическая газета «Математика», №14, 2005г.
  3. Н.И. Попов, А.Н. Марасанов Задачи на составление уравнений. Учебное пособие. Йошкар-Ола: Мар. гос. ун-т, 2003г.
  4. Н.А. Зарипова Программа элективного курса "Текстовые задачи". http://festival.1september.ru/articles/310281/
  5. Н.А. Зарипова Методика решения задач группы vts. Материалы к проведению элективного курса "Решение текстовых задач" http://festival.1september.ru/articles/415044/

Использованные изображения:

Cтраница 1


Арифметическое решение довольно запутанное, но задача решается просто, если обратиться к услугам алгебры и составить уравнение.  

При арифметическом решении должны быть выписаны все вопросы плана и арифметические действия, служащие ответами на них, а при алгебраическом - мотивы выбора неизвестных, составленные уравнения и их решение.  

Шульц дал арифметическое решение этого уравнения, пользуясь произвольными значениями констант, и пришел к выводу, что эффективность фракционирования должна сильно повышаться при работе с разбавленными растворами.  

Задача допускает чисто арифметическое решение, причем можно обойтись даже без действий над дробями.  

А теперь приведем арифметическое решение этой задачи - решение, в котором удается обойтись вообще без составления уравнений.  

Возможны еще и другие арифметические решения.  

В этом параграфе некоторые задачи допускают как алгебраическое, гак в арифметическое решение; они могут быть использованы при повторении курса арифметики.  

Они предусматривают применение арифметических действий по плану решения задачи. Арифметическое решение часто применяется в расчетах по химическим формулам и уравнениям, по концентрациям растворов и пр.  

Но здесь мы приводим только арифметические решения задач.  

Мы не подразделяем задачи на алгебраические и арифметические, так как задачи, решаемые арифметически, всегда можно решить и алгебраически. Наоборот, задачи, решаемые с помощью уравнений, нередко допускают более простое арифметическое решение. В отделе решений мы даем иногда арифметическое, иногда алгебраическое решение, но это не должно ни в какой мере стеснять инициативу учащегося в выборе способа решения.  

Мы не подразделяем задачи на алгебраические и арифметические, так как задачи, решаемые арифметически, всегда можно решить и алгебраически. Наоборот, задачи, решаемые с помощью уравнений, нередко допускают более простое арифметическое решение. В отделе решений мы даем иногда арифметическое, иногда алгебраическое решение, но это не должно ни L какой мере стеснять инициативу учащегося в выборе способа решения.  

Вот пример косвенной задачи: кусок сплава меди и цинка объемом в 1 дм3 имеет массу 8 14 кг. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить план решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально.  

Для подтверждения своей мысли Петров изобретал задачи, которые вследствие нешабдаояности очень затрудняли опытных искусных учителей, но легко решались более способными учениками, еще не испорченными учебой. К числу таких задач (их Петров сочинил несколько) относится и задача об артели косцов. Опытные учителя, разумеется, легко могли решать ее при помощи уравнения, но простое арифметическое решение от них ускользало. Между тем, задача настолько проста, что привлекать для ее решения алгебраический аппарат совсем не стоит.  

Вот пример косвенной задачи: кусок сплава меди и цинка объемом в дм3 весит 8 14 кг. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить пл н решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально.  

Арифметический способ решения текстовых задач

«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

А.В.Шевкин

Умение решать текстовые задачи – один из основных показателей математического развития учащихся, глубины усвоения ими учебного материала, четкости в рассуждениях, понимания логических аспектов различных вопросов.

Текстовые задачи для большинства школьников – трудный, а поэтому нелюбимый учебный материал. Однако, в школьном курсе математики ему придается большое значение, так как задачи способствуют развитию прежде всего логического мышления, пространственного воображения, практического применения математических знаний в деятельности человека.

В процессе решения задач учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики в решении реальных жизненных задач. Решение текстовых задач развивает логическую культуру, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.

Традиционная российская школа всегда уделяла особое внимание обучению детей решению текстовых задач. Исторически сложилось так, что достаточно долгое время математические знания из поколения в поколение передавались в виде текстовых задач с решениями. Значимость их заключалась еще в прикладном значении, так как по своему содержанию это были задачи практической направленности (расчеты банковские, торговые, земельные и др.). Образованным в России считался тот, кто умел решать эти типовые задачи, очень важные в повседневной жизни.

Необходимо отметить, что бучение решению практических задач давалось нелегко. Часто наблюдалось заучивание наизусть способа решения без осознанного понимания условия. Главное – определить тип задачи и найти правило для ее решения, понимание было не важно.

К середине XX века была разработана хорошая методика обучению решению задач. Но, к сожалению, часто наблюдалось со стороны преподавателей натаскивание учащихся на решение типовых задач, запоминание стандартных приемов. Но невозможно научиться решать задачи по заученной схеме.

В конце 60-х годов реформа школьного математического образования предполагала раннее введение уравнений с целью по-новому организовать обучение решению задач. Однако, роль алгебраического способа решения текстовых задач в 5-6 классах была преувеличена именно потому, что из школьной программы были удалены арифметические способы. И практика доказала, что без достаточной подготовки мышления учащихся решать задачи с помощью уравнений нецелесообразно. Ученик должен уметь рассуждать, представлять действия, которые происходят с предметами.

В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять достаточно внимания и не торопиться переходить к алгебраическому способу – решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, к чему они приводят. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе. Только над этим вряд ли задумывается ученик.

Очень часто мы наблюдаем, что ребенок не готов к решению задачи алгебраическим способом, когда вводим абстрактную переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что необходимо учитывать возрастные особенности детей, у которых на этот момент развито наглядно-образное мышление. Абстрактные модели им пока не под силу

Что же мы понимаем под требованием – решить задачу. Это значит найти такую последовательность действий, которая в результате анализа условия приведет к ответу на поставленный в задаче вопрос. Чтобы прийти к ответу, нужно проделать серьезный путь, начиная с момента понимания текста, уметь выделять главное, «перевести» задачу на язык математики, заменяя слова «скорее», «медленнее» на «меньше» или «больше», составлять графическую модель или таблицу, облегчающие понимание условия задачи, сопоставлять величины, устанавливая логические отношения между данными по условию и искомыми. И дается это детям очень нелегко.

Важно отметить, что текст задач должен составляться таким образом, чтобы ребенок понимал и представлял, о чем идет речь. Зачастую, прежде чем приступить к решению задачи, затрачивается много времени на разбор условия, когда учащимся приходится объяснять, что такое чугунная болванка, чем она отличается от детали, а также железобетонная опора, станок-автомат, жилая площадь и т.д. Текст задачи должен соответствовать уровню его восприятия. Конечно же, текст задачи необходимо приблизить к реальной жизни, чтобы можно было увидеть практическое применение данной модели.

Приступая к решению задачи необходимо не только представить ситуацию, о которой идет речь, но и изобразить ее на рисунке, схеме, в виде таблицы. Невозможно качественно решить задачу без составления краткой записи условия. Именно схематичное составление условия позволяет при обсуждении решения выявить все действия, которые необходимо выполнить, чтобы ответить на вопрос задачи.

Рассмотрим некоторые примеры решения текстовых задач

Задачи на движение

Данный тип задач широко распространен в школьном курсе математики. В них рассматриваются разные виды движения: навстречу, в противоположных направлениях, в одном направлении (один догоняет другого).

Для понимания этих задач удобно изобразить схему. Но, если учащийся составляет таблицу, не нужно переубеждать его в том, что данный способ краткой записи условия не очень хорош. Мы по-разному воспринимаем информацию. Может, ребенок в таком отображении лучше «видит» задачу.

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

Составим схему к задаче, которая достаточно полно отражает условие (указаны направления движения, скорости велосипедистов, время в пути до встречи, ясен вопрос):

Рассмотрим два способа решения этой задачи:

1 способ:

Традиционно мы любим решать эти задачи, вводя понятие «скорость сближения», и находим ее как сумму (или разность) скоростей участников движения. При движении навстречу друг другу – скорости складываем:

1)12 + 14 = 26 (км/ч) – скорость сближения

Зная, что время движения одинаково, второе действие позволяет по формуле пути (S = vt ) рассчитать искомое расстояние и ответить на поставленный в задаче вопрос.

2) 26 3 = 78 (км)

Составим выражение:

3(12 + 14) = 78(км)

Ответ : 78 км.

Но не все дети понимают, что это за абстрактная величина – скорость сближения. Почему можно складывать, а в других случаях вычитать скорости двух различных участников движения, объединяя их общим названием. Если ваши ученики решают эту задачу другим способом, не старайтесь их перетянуть на свою сторону. Для кого-то еще не настало время это понять, а кому-то первый способ вообще никогда не будет доступным.

2 способ:

1)12 3 = 36 (км) – путь первого велосипедиста до встречи

2)14 3 = 42 (км) – путь второго велосипедиста до встречи

3)36 + 42 = 78 (км) – расстояние между посёлками

Составим выражение:

12 3 + 14 3 = 78 (км)

Ответ : 78 км.

Постепенно, когда ребенок научится понимать такие задачи, сравнивая числовые выражения, можно показать, что оба способа взаимосвязаны, а заодно вспомнить распределительное свойство умножения:

12 3 + 14 3 = 3(12 + 14) = 78

Пример 2. В двух пачках было 54 тетради. Когда из первой пачки убрали 10 тетрадей, а из второй - 14 тетрадей, то в обеих пачках стало тетрадей поровну. Сколько было тетрадей в каждой пачке первоначально?

Как можно отобразить условие?

1.Составить таблицу:

Было

Убрали

Стало

1 пачка - ? 54 тет.

2 пачка – ?

10 тет.

14 тет.

поровну

2. Сделать рисунок

Забрали 14 шт.

Забрали 10 шт.

Поровну

Всего 54 шт.

Проанализируем решение задачи, обращая внимание на то, на какие вопросы мы даем ответы, выполняя каждое арифметическое действие:

1) Сколько всего тетрадей убрали из обеих пачек?

10 + 14 = 24 (шт.);

2) Сколько стало тетрадей в двух пачках?

    24 = 30 (шт.);

3) Сколько стало в каждой пачке тетрадей?

30: 2 = 15 (шт.);

4) Сколько было тетрадей в первой пачке первоначально?

    10 = 25 (шт.);

5) Сколько было тетрадей во второй пачке первоначально?

54 – 25 = 29 (шт.).

В 5 классе, вероятнее всего, ученик выберет именно такой способ решения задачи. А предложите ему решить эту задачу в 6 ил 7 классе. Возможно, ситуация изменится, и ученик будет решать ее с помощью уравнения. Выполняя те же действия, он не будет задумываться над многочисленными вопросами. Выбирая уравнение как средство решения задачи, очень быстро придет к тому же ответу.

Как же тогда будет выглядеть решение?

Пусть х тетрадей стало в каждой пачке после перекладывания,

тогда (х + 10) тетрадей было первоначально в первой пачке, а

(х + 14) тетрадей было первоначально во второй пачке.

Зная, что в двух пачках было 54 тетради, можно составить уравнение:

х + 10 + х + 14 = 54

В уравнении прослеживаются все те же действия, которые выполняются при арифметическом способе решения задачи.

х + х + (10 + 14) = 54; (1 действие арифметического способа)

2х = 54 – 24; (2 действие)

х = 30:2; (3 действие)

15 + 10 = 25 (шт.) (4 действие)

15 + 14 = 29 (шт.) (5 действие)

Ответ: 25 тетрадей, 29 тетрадей.

Но при этом никто не задает вопросов, что мы находим при выполнении каждого шага.

Своим ученикам я всегда показываю, что текст задач для 5-х или 9-х классов зачастую одинаков по смыслу. И практика показывает, что пятиклассники в состоянии разобраться с условием из задачника для 9 класса и даже составить уравнение. Решить такое уравнение, конечно же, пока не хватает знаний. Но при этом не каждому девятикласснику удается решить арифметическим способом задачу для 5 класса.

Школьники, обычно, выбирают алгебраический способ решения текстовых задач, к арифметическому они практически никогда не возвращаются. Они просто перестают видеть этот способ, увлекаясь введением переменных и составлением уравнений.

За что же мы ценим арифметический способ решения текстовых задач? Первое и главное за то, что при выполнении каждого арифметического действия учащийся задумывается над тем: «А что я нашел в результате?» Он представляет, о чем идет речь в задаче, так как каждое действие имеет наглядное и конкретное истолкование. В результате активно развивается логическое мышление. В процессе вычислений, измерений, поиска решения задач у ученика формируются познавательные универсальные учебные действия, формирование которых является важнейшей задачей современной системы основного общего образования.

Текстовые задачи изучаются в течение всего школьного курса математики. Но научить понимать задачи, анализировать условие, рассуждать и находить рациональные способы решения необходимо именно в 5-6 классах, пока уровень сложности их невелик, а сама задача является одной из самых важных категорий. На легком постигается сложное.

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть, развивает естественный язык, готовит школьников к дальнейшему обучению.

Арифметические способы решения текстовых задач позволяют строить план решения с учетом взаимосвязей между известными и неизвестными величинами (с учетом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью составления и решения обратной задачи, то есть, формировать и развивать важные общеучебные умения и навыки.

Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

Великий Д.Пойа сказал: “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”. Если мы научим детей решать задачи - мы не только повысим интерес к самому предмету, окажем значительное влияние на формирование их математического мышления, что способствует успешному освоению новых знаний в других областях.

Анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математики, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.Тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.


«задачи для тренажера методичка»

Тренажёр: «Арифметические способы решения задач»

«Сравнение чисел по сумме и разности».

    В двух корзинах 80 боровиков. В первой корзине на 10 боровиков меньше, чем во второй. Сколько боровиков в каждой корзине?

    В швейное ателье поступило 480 м джинсовой ткани и драпа. Джинсовой ткани поступило на 140 м больше, чем драпа. Сколько метров джинсовой ткани поступило в ателье?

    Модель телебашни состоит из двух блоков. Нижний блок на 130 см короче верхнего. Какова высота верхнего и нижнего блоков, если высота башни 4 м 70 см?

    В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше.

Задача из «Арифметики» Л. Н. Толстого.

    а) У двух мужиков 35 овец. У одного на 9 овец больше, чем у другого. Сколько овец у каждого?

б) У двух мужиков 40 овец, а у одного меньше против другого на 6 овец. Сколько овец у каждого мужика?

    В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

«Круги Эйлера».

    В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К жильцов с кошками. Сколько жильцов имеют и собак, и кошек? Сколько жильцов имеют только собак? Сколько жильцов имеют только кошек? Сколько жильцов не имеют ни собак, ни кошек?

    Из 52 школьников 23 занимаются волейболом и 35 баскетболом, а 16 – и волейболом, и баскетболом. Остальные не занимаются ни одним из этих видов спорта. Сколько школьников не занимаются ни одним из этих видов спорта?

    На рисунке круг А изображает всех сотрудников университета, знающих английский язык, круг Н – знающих немецкий и круг Ф – французский. Сколько сотрудников университета знает: а) 3 языка; б) английский и немецкий; в) французский? Сколько всего сотрудников университета? Сколько из них не говорит по – французски?

    В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

    Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним?

    Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

«Метод уравнивания данных».

    В 3 маленьких и 4 больших букетах 29 цветков, а в 5 маленьких и 4 больших букетах 35 цветков. Сколько цветков в каждом букете в отдельности?

    Масса 2 плиток шоколада – большой и маленькой – 120 г, а 3 больших и 2 маленьких – 320 г. Какова масса каждой плитки?

    5 яблок и 3 груши весят 810 г, а 3 яблока и 5 груш весят 870 г. Сколько весит одно яблока? Одна груша?

    Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг. Сколько весит один утенок?

    Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

    3 красных кубика и 6 синих кубиков стоят 165тг руб. Причём, пять красных дороже двух синих на 95 тг. Сколько стоит каждый кубик?

    2 альбома для рисования и 3 альбома для марок вместе стоят 160 руб., причём 3 альбома для рисования стоят на 45 руб. дороже двух альбомов для марок.

«Графы».

    Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

    Сколько трехзначных чисел можно составить из цифр 0, 1, 3, 5, если цифры в записи числа не повторяются?

    В среду в 5 классе пять уроков: математика, физкультура, история, русский язык и естествознание. Сколько различных вариантов расписания на среду можно составить?

«Старинный способ решения задач на смешение веществ».

    Как смешать масла? У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла стоимостью 7 гривен?

    Сколько надо взять карамели по цене 260 тг за 1 кг и по цене 190 тг за 1 кг, чтобы составить 21 кг смеси по цене 210 тг за килограмм?

    Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти три сорта, чтобы получить чай стоимостью 6 гривен за фунт?

    Некто имеет серебро разных проб: одно – 12 – ой пробы, другое – 10 – ой пробы, третье – 6 – ой пробы. Сколько какого серебра надо взять, чтобы получить 1 фунт серебра 9 – ой пробы?

    Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он и того и другого, если синее стоило 5 руб. за аршин, а черное - 3 руб.?

Разные задачи.

    Для новогодних подарков купили 87 кг фруктов, причем яблок было на 17 кг больше, чем апельсинов. Сколько яблок и сколько апельсинов купили?

    На новогодней елке детей в карнавальных костюмах снежинок было в 3 раза больше, чем в костюмах Петрушек. Сколько было детей в костюмах Петрушек, если их было на 12 меньше?

    Маша получила в 2 раза меньше новогодних поздравлений, чем Коля. Сколько поздравлений получил каждый, если всего их было 27?(9 и 18).

    Для новогодних призов было куплено 28 кг конфет. Конфеты “Ласточка” составили 2 части, “Муза” - 3 части, “Ромашка” - 2 части. Сколько конфет каждого сорта купили?(8, 8, 12).

    На складе есть 2004 кг муки. Можно ли её разложить в мешки массой в 9 кг и массой в 18 кг?

    В магазине "Все для чая"" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

    Лошадь съедает стог сена за 2 дня, корова - за 3, овца - за 6. За сколько дней они съедят стог, если будут есть его вместе?

Просмотр содержимого документа
«конспект урока ариф сп»

« Арифметические способы решения текстовых задач».

Человеку, изучающему математику, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три – четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.

У.У.Сойер

Цель урока : использовать знания, полученные на предыдущих уроках, проявить фантазию, интуицию, воображение, смекалку для решения тестовых задач различными способами.

Задачи урока: образовательные : анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математика, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.

Развивающие : ощутить необходимость самореализации, оказавшись в определенной ролевой ситуации.

Воспитательные: развивают личностные качества, формируют коммуникативную культуру.

Средства обучения : тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.

ХОД УРОКА.

I. Организационный момент

Здравствуйте, ребята. Садитесь. Сегодня у нас занятие по теме «Арифметические способы решения текстовых задач».

II. Актуализация знаний.

Математика - одна из древних и важных наук. Многими математическими знаниями люди пользовались еще в глубокой древности - тысячи лет назад. Они были необходимы купцам и строителям, воинам и землемерам, жрецам и путешественникам.

И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Основа хорошего понимания математики – умение считать, думать, рассуждать, находить удачные решения задач.

Сегодня мы рассмотрим арифметические способы решения текстовых задач, разберем задачи старинные, дошедшие до нас из разных стран и времен, задачи на уравнивания, на сравнение по сумме и разности и другие.

Цель занятия – вовлечь вас в удивительный мир красоты, богатства и многообразия – мир интересных задач. А, значит, познакомить с некоторыми арифметическими способами, приводящими к весьма изящным и поучительным решениям.

Задача – это почти всегда поиск, раскрытие каких – то свойств и отношений, а средства ее решения – это интуиция и догадка, эрудиция и владение методами математики.

В качестве основных в математике различают арифметический и алгебраический способы решения задач.

Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Не секрет, что человек, владеющий разными инструментами и применяющий их в зависимости от характера выполняемой работы, добивается значительно лучших результатов, чем человек, владеющий лишь одним универсальным инструментом.

Существует много арифметических способов и нестандартных приемов решения задач. С некоторыми из них я сегодня хочу вас познакомить.

1.Метод решения текстовых задач «Сравнение чисел по сумме и разности».

Задача: Бабушка осенью с дачного участка собрала 51 кг моркови и капусты. Капусты было на 15 кг больше, чем моркови. Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

Вопросы, которые соответствуют пунктам алгоритма решения задач данного класса.

1. Выяснить о каких величинах идет речь в задаче

О количестве моркови и капусты, которые собрала бабушка, вместе и в отдельности.

2. Указать, значения каких величин необходимо найти в задаче.

Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

3. Назвать зависимость между величинами в задаче.

В задаче говорится о сумме и разности величин.

4. Назвать сумму и разность значений величин.

Сумма – 51 кг, разность – 15 кг.

5. Уравниванием величин найти удвоенное значение меньшей величины (от суммы величин отнять разность величин).

51 – 15 = 36 (кг) – удвоенное количество моркови.

6. Зная удвоенное значение, найти значение меньшей величины (удвоенное значение разделить на два).

36: 2 = 18 (кг) – моркови.

7. Используя разность величин и значение меньшей величины, найти значение большей величины.

18 + 15 = 33 (кг) – капусты. Ответ: 18 кг, 33 кг. Задача. В клетке находятся фазаны и кролики. Всего 6 голов и 20 ног. Сколько кроликов и сколько фазанов в клетке ?
Способ 1. Метод подбора:
2 фазана, 4 кролика.
Проверка: 2 + 4 = 6 (голов); 4 4 + 2 2 = 20 (ног).
Это метод подбора (от слова “подбирать”). Преимущества и недостатки у этого метода решения (трудно подбирать, если числа большие) Таким образом, появляется стимул для поиска более удобных методов решения.
Итоги обсуждения: метод подбора удобен при действиях с маленькими числами, при увеличении величин он становится нерациональным и трудоемким.
Способ 2. Полный перебор вариантов.

Составляется таблица:


Ответ: 4 кролика, 2 фазана.
Название этому методу - “полный”. Итоги обсуждения: метод полного перебора удобен, но при больших величинах достаточно трудоемок.
Способ 3. Метод предположения.

Возьмем старинную китайскую задачу:

В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Узнать число фазанов и число кроликов. (Задача из китайской математической книги «Киу-Чанг», составленной за 2600 лет до н. э.).

Приведем диалог, найденный у старых мастеров математики. - Представим, что на клетку, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

Но в условии задачи даны 94 ноги, где же остальные?

Остальные ноги не посчитаны – это передние ноги кроликов.

Сколько же их?

24 (94 – 70 = 24)

Сколько же кроликов?

12 (24: 2 = 12)

А фазанов?

23 (35- 12 = 23)

Название этого метода – “метод предположения по недостатку”. Попробуйте сами объяснить это название (у сидящих в клетке 2 или 4 ноги, а мы предположили, что у всех наименьшее из этих чисел – 2 ноги).

Другой способ решения этой же задачи. - Давайте попробуем решить эту задачу - “методом предположения по избытку”: Представим себе, что у фазанов появилось еще по две ноги, тогда всех ног будет 35 × 4 =140.

Но по условию задачи, всего 94 ноги, т.е. 140 – 94= 46 ноги лишние, чьи они? Это ноги фазанов, у них появилась лишняя пара ног. Значит, фазанов будет 46: 2 = 23, тогда кроликов 35 -23 = 12.
Итоги обсуждения: метод предположения имеет два варианта – по недостатку и по избытку ; по сравнению с предыдущими методами он удобнее, так как менее трудоемок.
Задача. По пустыне медленно идет караван верблюдов, всего их 40. Если пересчитать все горбы у этих верблюдов, то получится 57 горбов. Сколько в этом караване одногорбых верблюдов? 1 способ. Решить с помощью уравнения.

Кол- во горбов у одного Кол- во верблюдов Всего горбов

2 х 2 х

1 40 - х 40 - х 57

2 х + 40 - х = 57

х + 40 = 57

х = 57 -40

х = 17

2 способ.

- Сколько горбов может быть у верблюдов?

(их может быть два или один)

Давайте каждому верблюду на один горб прикрепим цветок.

- Сколько цветков потребуется? (40 верблюдов – 40 цветов)

- Сколько горбов останется без цветов?

(Таких будет 57-40=17 . Это вторые горбы двугорбых верблюдов).

Сколько двугорбых верблюдов? (17)

Сколько одногорбых верблюдов? (40-17=23)

Каков же ответ задачи? (17 и 23 верблюдов).

Задача. В гараже стояли легковые машины и мотоциклы с колясками, всех вместе 18. У машин и мотоциклов – 65 колес. Сколько мотоциклов с колясками стояло в гараже, если у машин 4 колеса, а у мотоцикла – 3 колеса?

1 способ. С помощью уравнения:

Кол- во колес у 1 Кол- во Всего колес

Маш. 4 х 4 х

Мот. 3 18 - х 3(18 - х ) 65

4 х + 3(18 - х ) = 65

4 х + 5 4 -3 х =65

х = 65 - 54

х = 11, 18 – 11 = 7.

Переформулируем задачу : Грабители, пришедшие в гараж, где стояли 18 машин и мотоциклов с колясками, сняли с каждой машины и каждого мотоцикла по три колеса и унесли. Сколько колес осталось в гараже, если их было 65? Машине или мотоциклу они принадлежат?

3×18=54 –столько колес унесли грабители,

65- 54 = 11 – столько колес осталось (машин в гараже),

18 - 11 = 7 –мотоциклов.

Ответ: 7 мотоциклов.

Самостоятельно:

В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

- Сколько стало колес у машин и мотоциклов вместе? (4×23=92)

- Сколько запасных колес положили в каждую коляску? (92 - 87= 5)

- Сколько машин в гараже? (23 - 5=18).

Задача. В нашем классе можно изучать английский или французский языки (по выбору). Известно, что английский язык изучают 20 школьников, а французский – 17. Всего в классе 32 ученика. Сколько учащихся изучают оба языка: и английский и французский?

Изобразим два круга. В одном будем фиксировать количество школьников, изучающих английский язык, в другом –школьников, изучающих французский. Так как по условию задачи есть учащиеся, изучающие оба языка: и английский и французский , то круги будут иметь общую часть. В условии этой задачи не так легко разобраться. Если сложить 20 и 17, то получится больше чем 32. Это объясняется тем, что некоторых школьников мы здесь учли дважды – а именно тех, которые изучают оба языка: и английский и французский. Значит, (20 + 17) – 32 = 5 учащихся изучают оба языка: и английский и французский.

Англ. Фран.

20 уч. 17 уч.

(20 + 17) – 32 = 5 (учащихся).

Схемы, подобные той, которой мы воспользовались при решении задачи, в математике называют кругами (или диаграммами) Эйлера. Леонард Эйлер (1736 год) родился в Швейцарии. Но долгие годы жил работал в России.

Задача. Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

Газеты Журналы

По рисунку видно, что в доме живут 89 семей.

Задача. В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

Русский 15 Английский

21 10 19

Немецкий

Решение: 120 – (60 + 48 + 32 -21 – 19 – 15 + 10) = 25 (чел.).

Задача. Три котенка и два щенка весят 2 кг 600 г, а два котенка и три щенка весят 2 кг 900 г. Сколько весит щенок?

3 котенка и 2 щенка – 2кг 600 г

2 котенка и 3щенка – 2кг 900 г.

Из условия следует, что 5 котят и 5 щенят весят 5 кг 500 г. Значит, 1 котенок и 1 щенок весят 1 кг 100 г

2 кот.и 2 щен. весят 2 кг 200 г

Сравним условия –

2 котенка + 3щенка =2кг 900 г

2 котенка + 2 щенка = 2 кг 200 г, видим, что щенок весит 700 г.

Задача. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

Запишем краткое условие задачи:

1 лошади и 2 коров -34кг.

2 лошадей и 1 коров -35кг.

Можно ли узнать, сколько сена потребуется для 3 лошадей и 3 коров?

(для 3 лошадей и 3 коров – 34+35=69 кг)

Можно ли узнать, сколько сена потребуется для одной лошади и одной коровы? (69: 3 – 23кг)

Сколько сена потребуется для одной лошади? (35-23=12кг)

Сколько сена потребуется для одной коровы? (23 -13 =11кг)

Ответ: 12кг и 11 кг.

Задача. Мадина решила позавтракать в школьном буфете. Изучи меню и ответь, сколькими способами она может выбрать напиток и кондитерское изделие?

Кондитерские изделия

Ватрушка

Давайте предположим, что из напитков Мадина выберет чай. Какое кондитерское изделие она может подобрать к чаю? (чай – ватрушка, чай – печенье, чай – булка)

Сколько способов? (3)

А если компот? (тоже 3)

Как же узнать, сколько способов может Мадина использовать, чтобы выбрать себе обед? (3+3+3=9)

Да, вы правы. Но чтобы нам было легче решать такую задачу, мы будем использовать графы. Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Обозначим напитки и кондитерские изделия точками и соединим пары тех блюд, которые выберет Мадина.

чай молоко компот

ватрушка печенье булочка

Теперь сосчитаем количество линий. Их 9. Значит, существует 9 способов выбора блюд.

Задача. Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

Как думаете, сколькими способами? (3)

Почему? (цветов 3)

Да. Но еще есть разная посуда: или ваза, или кувшин. Давай попробуем выполнить задачу графически.

ваза кувшин

розы тюльпаны гвоздики

Посчитайте линии. Сколько их? (6)

Значит, сколько существует способов выбора у Сережи? (6)

Итог урока.

Сегодня мы решили ряд задач. Но работа не завершена, есть желание ее продолжить, и надеюсь, что это поможет вам успешно решать текстовые задачи.

Известно, что решение задач – это практическое искусство, подобное плаванию или игре на фортепиано. Научиться ему можно только подражая хорошим образцам, постоянно практикуясь.

Это лишь самые простые из задач, сложные пока остаются предметом для будущего изучения. Но их все равно их намного больше, чем мы смогли бы решить. И если по окончанию урока вы сможете решать задачи «за страницами учебного материала», то можно считать, что я свою задачу выполнила.

Знание математики помогает разрешить определённую жизненную проблему. В жизни вам придется регулярно разрешать определённые вопросы, для этого необходимо развивать интеллектуальные способности, благодаря которым развивается внутренний потенциал, развиваются умения предвидеть ситуацию, прогнозировать, принять нестандартное решение.

Урок я хочу закончить словами: «Всякая хорошо решенная математическая задача доставляет умственное наслаждение.» (Г. Гессе).

Согласны вы с этим?

Домашнее задание .

На дом будет такое задание: используя тексты решенных задач, как образец, решите задачи № 8, 17, 26 теми способами, которые мы изучили.

Cтраница 1


Арифметический метод - сумма амортизационных отчислений ежегодно уменьшается по арифметическому ряду.  

Арифметический метод контроля включает подсчет контрольных сумм по строкам и столбцам документов, имеющих табличную форму, контроль по формулам, признакам делимости или четности, балансовые методы, повторный ввод и т.п. Для предотвращения случайного или намеренного искажения информации служат и организационные, и специальные мероприятия.  

Арифметический метод решения задачи является чисто синтетическим: от одного известного факта он переходит к другому до тех пор, пока желанная цель не будет достигнута. Алгебраический же метод решения по своей природе аналитический: он начинает с конца и, обозначив цель поиска условным символом, устремляется к началу и влечет за собой свою жертву-инкогнито до тех пор, пока не выходит на ослепительный свет известных фактов, срывает с нее маску и говорит: Я тебя знаю.  

Примером использования арифметических методов для решения сравнительно сложных математических задач может служить численное решение обыкновенных дифференциальных уравнений. Аналитическим решением дифференциального уравнения является уравнение, выражающее зависимую переменную в виде функции от независимой переменной; численное же решение представляется в виде таблицы, включающей значения независимой переменной и соответствующие значения зависимой переменной в требуемом диапазоне.  

Подобные задачи арифметическим методом уже решались учащимися на уроках математики, что и следует использовать, особенно в начале изучения темы. Заканчивается раздел решением задач с использованием понятия о средней скорости движения.  

Простые проблемы можно решать с помощью арифметических методов, по мере усложнения проблем для их решения должны использоваться более сложные методы: регрессия, матричная алгебра, дифференциальные уравнения. За некоторой границей сложности математическую обработку данных нецелесообразно или вообще невозможно вести вручную - ее необходимо производить на ЭВМ. Роль человека при этом коренным образом меняется. Не участвуя в прямых вычислениях, человек занят в этом случае вопросами определения структуры решения проблемы вводом исходных данных и рассмотрением полученных результатов.  

Иногда считают, что отличительная черта арифметического метода - отсутствие буквенных выражений. Дело как раз не в буквенных выражениях, а в том, что при этом методе не составляют и не решают уравнений.  

Арифметический метод хотя и обладает несколько меньшей точностью по сравнению с графическим, но зато более простой и удобный в практической работе.  

Здесь решаются задачи на составление кинематическ. Для решения этих задач применяется преимущественно формальный арифметический метод подсчета числа переменных параметров и условий связи, к-рыми определяется движение механизма.  

Результаты октав-ного анализа шума наносят на график нормировочных кривых шума, и наибольший номер кривой, превышенный уровнем шум-а в одной или нескольких октавных полосах, считается нормировочным индексом шума. Существует также арифметический метод нахождения этого индекса. В широкой практике предпочитают пользоваться оценкой шу-ч ма в дБА как более адекватной.  

В том же гармоническом осцилляторе, например, если сила пружины не будет пропорциональна отклонению от положения равновесия, а окажется несколько сложнее, мы уже не сможем ничего поделать и вынуждены обращаться к численному расчету. Интересно, что, пока люди поняли ограниченные возможности математического анализа и необходимость использования числовых методов, потребовалось немало времени. Сейчас с помощью этих методов решается огромное количество задач, которые не могли быть решены аналитически. Однако имеются ситуации, когда оба метода оказываются бессильны: простые задачи решаются аналитически, а задачи посложнее - числовым арифметическим методом, но очень сложные задачи невозможно решить ни так, ни этак. Солнца, собрано громадное количество звезд. Эти проблемы нельзя решить прямыми методами, и нужно изыскать какие-то другие пути.  

Его метод состоит в расположении сообщений длины N в порядке убывающих вероятностей. Этот ряд делится на две группы, по возможности с равными вероятностями. Если сообщение относится к первой группе, его первая двоичная цифра будет 0, в противном случае - единица. Эти группы аналогичным образом делятся на подгруппы примерно равной вероятности, и частная подгруппа определяет второй двоичный знак. Этот процесс продолжается до тех пор, пока не получатся подгруппы, содержащие только по одному сообщению. Легко видеть, что, за исключением незначительных отличий (в общем случае в последней цифре), это приводит к тем же результатам, что и при описанном выше арифметическом методе.  

Страницы:      1

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»