Индукционный датчик положения. Что такое индуктивный датчик и как он работает? Промышленные измерительные системы

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Индуктивные, оптические и другие виды датчиков широко используются в области промышленной электроники. И в этой статье вы узнаете, что из себя представляют датчики, какими они бывают, как применяются и где их можно приобрести. Особое внимание здесь уделится индуктивным датчикам, принципу их работы, видам и применению. Купить такие датчики непросто, поскольку они не производятся широким тиражом, но если есть заинтересованность в их покупке, приобрести индукционные датчики можно на сайте teko-com.ru .

Для начала давайте узнаем, что такое обычный датчик. Датчик - это устройство, выдающее определенный сигнал при появлении какого-то события. Иными словами, датчик реагирует на некоторые изменения и на его выходе активизируется дискретный, аналоговый или цифровой сигнал.

Виды датчиков

Датчиков существует огромное множество и здесь приведены самые часто используемые из всех видов.

Индуктивные. Активизация происходит благодаря наличию металла в зоне срабатывания. Другие наименования: индукционный, бесконтактный датчик, датчик присутствия или выключатель.

Оптические. По-другому называются фотодатчик, оптический выключатель, в быту датчик освещенности.

Емкостные. Такие датчики реагируют на наличие любого предмета в зоне активности.

Давления. Если нет давления воздуха и масла - сигнал на контроллер и тогда рвет аварийную цепь.

Электрические. Обыкновенные пассивные датчики, которые срабатывают тогда, когда к ним прикасается или давит предмет.

Что же такое индуктивные датчики?

По сути, индуктивный датчик - это прибор, который измеряет перемещение части оборудования. А при превышении пределов проходимости отключает его.

В основе работы датчика значится генератор, в который встроена катушка индуктивности. Собственно, отсюда и происходит название. При появлении металлосодержащего элемента в электромагнитной зоне катушки активизируется сигнал, зона резко меняется и это влияет на работу схемы. Проще говоря, нет металла - нет сигнала.

Виды индуктивных датчиков и параметры по которым датчики отличаются друг от друга.

1. Конструкция корпуса. Корпус бывает двух видов: прямоугольный и цилиндрический. Изготавливаются из металла или пластика.

2. Диаметр датчика. Основные варианты: 12 и 18 мм. Реже применяемы: 4 мм, 8 мм, 22 мм и 30 мм.

3. Количество проводов для подключения. Разделяются на двух-, трех-, четырех- и пятипроводные.

Двухпроводные - подобны выключателям, которыми мы включаем свет. Датчик включается в цепь нагрузки. Такие датчики легко применяются в монтаже, но слабы в нагрузке.

Трехпроводные - самые применяемые. Два проводе для питания и один для нагрузки.

Четырехпроводные - используются как два выхода на нагрузку.

Пятипроводные - применяются при выборе режима работы или состояния выхода.

4. Расстояние переключения. Расстояние до металлической пластины, которое необходимо для точного срабатывания датчика. Для мелких датчиков: от 0 до 2 мм, для средних: от 4 мм до 8 мм и для крупных: до 30 мм.

5. Выходы датчиков. Бывает только три варианта выходов датчиков:

Релейный. Реле коммутирует нужное напряжение либо использует один из проводов питания. Главным плюсом такого выхода является то, что обеспечивается полная развязка от схемы питания счетчика.

Транзисторный PNP. На выходе стоит транзистор PNP, а это значит, что есть коммутация "плюсового" провода. К "минусу" нагрузка включена постоянно.

Транзисторный NPN. На выходе - транзистор NPN, коммутируется "минусовый" провод. К "плюсу" нагрузка включена постоянно.

Применение индуктивного датчика

В области промышленной автоматики индуктивные датчики широко применяются для определения положения какой-то части механизма. Сигнал с выхода переключается на вход контроллера, реле, пускателя и т.п. Главное, чтобы все соответствовало току и напряжению.

Достоинства и недостатки индуктивных датчиков

А сейчас мы узнаем, чем так хороши эти датчики, а чего в них стоит остерегаться.

Простота и надежность конструкции.

Повышенная чувствительность.

Выдержка большой выходной мощности.

Самым распространенным типом устройств в составе существующих АСУ ТП являются индуктивные датчики положения, их количество превышает 90% от всех применяемых дискретных датчиков положения. Любой технологический процесс в практически любой отрасли промышленности (пищевая, машиностроение, нефтегазовая, энергетика) требует отслеживать положение заслонок, приводов, клапанов, деталей и заготовок, подвижных элементов конструкций агрегатов и т.д. в автоматическом режиме.

Повсеместному распространению индуктивных датчиков послужили их надежность, отличные эксплуатационные характеристики и сравнительно низкая стоимость. Основными рабочими характеристиками индуктивных датчиков положения являются: диапазон срабатывания, степень защиты, рабочая температура и частота отклика.

Принцип действия индуктивных датчиков заключается в следующем. При подаче питания на датчик возбуждается первичная обмотка от переменного напряжения резонатор и тем самым создает вблизи себя электромагнитное поле. При помещении в зону действия электромагнитного поля металлического объекта, который, по сути, становится вторичной обмоткой, начинают наводиться токи вихревого характера, так называемые токи Фуко. Такое явление ведет к ухудшению добротности первичной обмотки, что в свою очередь приводит к изменению в сторону уменьшения амплитуды сигнала резонатора, из-за чего срабатывает компаратор (триггер Шмидта), далее сигнал усиливается посредством усилителя и выдается на выход датчика.

Параметры индуктивных датчиков положения и рекомендации по их применению

Чтобы правильно подобрать индуктивный датчик под определенную задачу необходимо знать ряд основных параметров, а также за какие функции эти параметры отвечают.

Наверное, главным параметром, указанным в паспорте на датчик является номинальный диапазон срабатывания . Он обозначается как Sn. Номинальный диапазон срабатывания, хотя и является основным параметром, но практического значения особо не имеет. Так как его значение получается при ряде ограничений связанных с внешними факторами, а именно: температура окружающей среды 20 градусов Цельсия, питающее напряжение 24 В постоянного или же 230 В переменного тока. А в качестве объекта должна использоваться стальная пластина, выполненная из определенной стали, квадратной формы с шириной в 3 раза больше ширины значения Sn и толщиной 1мм. Практическое же значение имеют такие параметры, как эффективный диапазон срабатывания Sr и полезный диапазон срабатывания Su. Значение Sr варьируется в пределах плюс минус 10% от номинального диапазона срабатывания, а измеряется в температурном диапазоне от 18 до 28 градусов Цельсия и при номинальном напряжении питания. Полезный диапазон срабатывания индуктивного датчика варьируется в пределах плюс минус 10% от эффективного и измеряется при напряжении питания равного 85% - 110% от номинального и температуре от -25 до +70 градусов Цельсия. Часто в техническом описании на датчик можно встретить такой параметр, как гарантированная зона (диапазон) срабатывания . Его нижняя граница равна 0, а верхняя значению 0.81Sn. Также важными параметрами индуктивных датчиков положения, влияющими на точность и достоверность измерений, являются гистерезис и повторяемость H и R соответственно. Гистерезисом называют расстояние между самыми дальними точками срабатывания датчика на объект при приближении и удалении последнего. Нормальным считается значение гистерезиса равное 0.2Sr.

Помимо свойств присущих непосредственно самому индуктивному датчику положения на диапазон срабатывания влияют свойства материала объекта, речь идет об электропроводимости и магнитной проницаемости. Для этого было введено понятие коэффициента редукции . Эталонным материалом считается Сталь 37, ее коэффициент редукции равен 1. Для других металлов коэффициент редукции имеет значение меньше 1. Например, нержавейка имеет коэффициент редукции 0.85, а медь всего лишь 0.3. То есть, если объектом срабатывания является медь, то диапазон срабатывания уменьшается до значения равного 0.3Sn .

Напряжение питания датчика

Питание индуктивных датчиков может осуществляться как от источников постоянного тока, так и источников переменного тока. Для постоянного тока характерны диапазоны напряжений: 10-30В, 10-60В и 5-60В. Для переменного тока характерен диапазон: 98-253В. Также существуют индуктивные датчики имеющие универсальное питание, такие датчики можно запитать как от источника постоянного, так и от источника переменного тока.

Номинальный ток нагрузки

Параметр показывает, на какое значение тока рассчитан датчик при действии нагрузки продолжительный интервал времени. Стандартным является значение равное 200мА, но бывают спец исполнения датчиков рассчитанные и на 500мА.

Частота отклика

Параметр показывает, с какой максимальной частотой, выраженной в герцах, датчик может осуществлять переключения. Для большинства промышленных применений хватает частоты отклика равной 1000Гц, а вот поднимать частоту выше 5кГц производителям датчиков нет особого смысла, так как такая частота будет выше, частоты выполнения стандартного цикла промышленного контроллера (ПЛК). Тем самым состояние такого датчика может быть неверно интерпретировано модулем ввода ПЛК.

При выборе датчиков также стоит обратить на степень защиты корпуса от брызг и пыли, и диапазон температуры при котором может работать индуктивный датчик. Стандартными являются степень защиты IP67, а температурный диапазон от минус 25 до плюс 70 градусов Цельсия.

Индуктивный датчик - это преобразователь параметрического типа, принцип действия которого основан на изменении L или взаимоиндуктивности обмотки с сердечником, вследствие изменения магнитного сопротивления RМ магнитной цепи датчика, в которую входит сердечник.

Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм. Также можно использовать индуктивный датчик для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

В случае измерения давлений, чувствительные элементы могут выполняться в виде упругих мембран, сильфонов, и т. д. Используются они и в качестве датчиков приближения, которые служат для обнаружения различных металлических и неметаллических объектов бесконтактным способом по принципу “да” или “нет”.

Достоинства индуктивных датчиков:

    простота и прочность конструкции, отсутствие скользящих контактов;

    возможность подключения к источникам промышленной частоты;

    относительно большая выходная мощность (до десятков Ватт);

    значительная чувствительность.

Недостатки индуктивных датчиков:

    точность работы зависит от стабильности питающего напряжения по частоте;

    возможна работа только на переменном токе.

Типы индуктивных преобразователей и их конструктивные особенности

По схеме построения индуктивные датчики можно разделить на одинарные и дифференциальные. Одинарный индуктивный датчик содержит одну измерительную ветвь, дифференциальный – две.

В дифференциальном индуктивном датчике при изменении измеряемого параметра одновременно изменяются индуктивности двух одинаковых катушек, причем изменение происходит на одну и ту же величину, но с обратным знаком.

Как известно, :

где W– число витков; Ф – пронизывающий ее магнитный поток; I – проходящий по катушке ток.

Ток связан с МДС соотношением:

Откуда получаем:

где Rm = HL / Ф – магнитное сопротивление индуктивного датчика.

Рассмотрим, например, одинарный индуктивный датчик. В основу его работы положено свойство дросселя с воздушным зазором изменять свою индуктивность при изменении величены воздушного зазора.

Индуктивный датчик состоит из ярма 1, обмотки 2, якоря 3- удерживается пружинами. На обмотку 2 через сопротивление нагрузки Rн подается напряжение питания переменного тока. Ток в цепи нагрузки определяется как:

где rд - активное сопротивление дросселя; L - индуктивность датчика.

Т.к. активное сопротивление цепи величина постоянная, то изменение тока I может происходить только за счет изменения индуктивной составляющей XL=IRн, которая зависит от величены воздушного зазора δ .

Каждому значению δ соответствует определенное значение I, создающего падение напряжения на сопротивлении Rн: Uвых=IRн - представляет собой выходной сигнал датчика. Можно вывести аналитическую зависимость Uвых=f(δ ), при условии что зазор достаточно мал и потоками рассеяния можно пренебречь, и пренебречь магнитным сопротивлением железа Rмж по сравнению с магнитным сопротвлением воздушного зазора Rмв.

Приведем конечное выражение:

В реальных устройствах активное сопротивление цепи намного меньше индуктивного, тогда выражение сводится к виду:

Зависимость Uвых=f(δ) имеет линейный характер (в первом приближении). Реальная характеристика имеет вид:

Отклонение от линейности в начале объясняется принятым допущением Rмж<< Rмв.

При малых d магнитное сопротивление железа соизмеримо с магнитным сопротивлением воздуха.

Отклонение при больших d объясняются тем, что при больших d RL становится соизмеримой с величиной активного сопротивления - Rн+rд.

В целом рассмотренный индуктивный датчик имеет ряд существенных недостатков:

    не меняется фаза тока при изменении направления перемещения;

    при необходимости измерять в обоих направлениях перемещение нужно устанавливать начальный воздушный зазор и, следовательно, ток I0,что неудобно;

    ток в нагрузке зависит от амплитуды и частоты питающего напряжения;

    в процессе работы датчика на якорь действует сила притяжения к магнитопроводу, которая ничем не уравновешивается, и значит вносит погрешность в работу датчика.

Дифференциальные индуктивные датчики представляет собой совокупность двух нереверсивных датчиков и выполняются в виде системы, состоящей из двух магнитопроводов с общим якорем и двумя катушками. Для дифференциальных индуктивных датчиков необходимы два раздельных источника питания, для чего обычно используется разделительный трансформатор 5.

По форме магнитопровода могут быть дифференциально-индуктивные датчики с магнитопроводом Ш-образной формы, набранные из мостов электротехнической стали (при частотах выше 1000Гц применяются железоникелевые сплавы - пермолой), и цилиндрические со сплошным магнитопроводом круглого сечения. Выбор формы датчика зависит от конструктивного сочетания его с контролируемым устройством. Применение Ш-образного магнитопровода обусловлено удобством сборки катушки и уменьшением габаритов датчика.

Для питания дифференциально-индуктивного датчика используют трансформатор 5 с выводом средней точки на вторичной обмотке. Между ним и общим концом обеих катушек включается прибор 4. Воздушный зазор 0,2-0,5 мм.

При среднем положении якоря, когда воздушные зазоры одинаковы, индуктивные сопротивления катушек 3 и 3" одинаковы следовательно величины токов в катушках равны I1=I2 и результирующий ток в приборе равен 0.

При небольшом отклонении якоря в ту или иную сторону под действием контролируемой величены Х меняются величины зазоров и индуктивностей, прибор регистрирует разностный ток I1-I2, он является функцией смещения якоря от среднего положения. Разность токов обычно регистрируется с помощью магнитоэлектрического прибора 4 (микроамперметра) с выпрямительной схемой В на входе.

Характеристика индуктивного датчика имеет вид:

Полярность выходного тока остается неизменной независимо от знака изменения полного сопротивления катушек. При изменении направления отклонения якоря от среднего положения меняется на противоположную (на 180°) фаза тока на выходе датчика. При использовании фазочувствительных выпрямительных схем можно получить индикацию направления перемещения якоря от среднего положения. Характеристика дифференциального индуктивного датчика с ФЧВ имеет вид:

Погрешность преобразования индуктивного датчика

Информативная способность индуктивного датчика в значительной мере определяется его погрешностью преобразования измеряемого параметра. Суммарная погрешность индуктивного датчика складывается из большого числа составляющих погрешностей.

Можно выделить следующие погрешности индуктивного датчика:

1) Погрешность от нелинейности характеристики. Мультипликативная составляющая общей погрешности. Из-за принципа индуктивного преобразования измеряемой величины, лежащего в основе работы индуктивных датчиков, является существенной и в большинстве случаев определяет диапазон измерения датчика. Обязательно подлежит оценке при разработке датчика.

2) Температурная погрешность. Случайная составляющая. Ввиду большого числа зависимых от температуры параметров составных частей датчика составляющая погрешность может достичь больших величин и является существенной. Подлежит оценке при разработке датчика.

3) Погрешность от влияния внешних электромагнитных полей. Случайная составляющая общей погрешности. Возникает из-за индуцирования ЭДС в обмотке датчика внешними полями и из-за изменения магнитных характеристик магнитопровода под действием внешних полей. В производственных помещениях с силовыми электроустановками обнаруживаются магнитные поля с индукцией Тл и частотой в основном 50 Гц.

Поскольку магнитопроводы индуктивных датчиков работают при индукциях 0,1 – 1 Тл, то доля от внешних полей составит 0,05–0,005% даже в случае отсутствия экранирования. Введение экрана и применение дифференциального датчика снижают эту долю примерно на два порядка. Таким образом, погрешность от влияния внешних полей должна приниматься в рассмотрение только при проектировании датчиков малой чувствительности и с невозможностью достаточной экранировки. В большинстве случаев эта составляющая погрешности не является существенной.

4) Погрешность от магнитоупругого эффекта. Возникает из-за нестабильности деформаций магнитопровода при сборке датчика (аддитивная составляющая) и из-за изменения деформаций в процессе эксплуатации датчика (случайная составляющая). Расчеты с учетом наличия зазоров в магнитопроводе показывают, что влияние нестабильности механических напряжений в магнитопроводе вызывает нестабильность выходного сигнала датчика порядка, и в большинстве случаев эта составляющая может специально не учитываться.

5) Погрешность от тензометрического эффекта обмотки. Случайная составляющая. При намотке катушки датчика в проводе создаются механические напряжения. Изменение этих механических напряжений в процессе эксплуатации датчика ведет к изменению сопротивления катушки постоянному току и, следовательно, к изменению выходного сигнала датчика. Обычно для правильно спроектированных датчиков, т. е. эту составляющую не следует специально учитывать.

6) Погрешность от соединительного кабеля. Возникает из-за нестабильности электрического сопротивления кабеля под действием температуры или деформаций и из-за наводок ЭДС в кабеле под действием внешних полей. Является случайной составляющей погрешности. При нестабильности собственного сопротивления кабеля погрешность выходного сигнала датчика. Длина соединительных кабелей составляет 1–3 м и редко больше. При выполнении кабеля из медного провода сечением сопротивление кабеля менее 0,9 Ом, нестабильность сопротивления. Поскольку полное сопротивление датчика обычно больше 100 Ом, погрешность выходного сигнала датчика может составить величину. Следовательно, для датчиков, имеющих малое сопротивление в рабочем режиме, погрешность следует оценивать. В остальных случаях она не является существенной.

7) Конструктивные погрешности. Возникают под действием следующих причин: влияние измерительного усилия на деформации деталей датчика (аддитивная), влияние перепада измерительного усилия на нестабильность деформаций (мультипликативная), влияние направляющих измерительного стержня на передачу измерительного импульса (мультипликативная), нестабильность передачи измерительного импульса вследствие зазоров и люфтов подвижных частей (случайная). Конструктивные погрешности в первую очередь определяются недостатками в конструкции механических элементов датчика и не являются специфическими для индуктивных датчиков. Оценка этих погрешностей производится по известным способам оценки погрешностей кинематических передач измерительных устройств.

8) Технологические погрешности. Возникают вследствие технологических отклонений взаимного положения деталей датчика (аддитивная), разброса параметров деталей и обмоток при изготовлении (аддитивная), влияния технологических зазоров и натягов в соединении деталей и в направляющих (случайная).

Технологические погрешности изготовления механических элементов конструкции датчика также не являются специфическими для индуктивного датчика, их оценка производится обычными для механических измерительных устройств способами. Погрешности изготовления магнитопровода и катушек датчика ведут к разбросу параметров датчиков и к затруднениям, возникающим при обеспечении взаимозаменяемости последних.

9) Погрешность от старения датчика. Эта составляющая погрешности вызывается, во-первых, износом подвижных элементов конструкции датчика и, во-вторых, изменением во времени электромагнитных характеристик магнитопровода датчика. Погрешность следует рассматривать как случайную. При оценке погрешности от износа во внимание принимается кинематический расчет механизма датчика в каждом конкретном случае. На стадии конструирования датчика в этом случае целесообразно задавать срок службы датчика в нормальных для него условиях эксплуатации, за время которого дополнительная погрешность от износа не превысит заданной величины.

Электромагнитные свойства материалов изменяются во времени.

В большинстве случаев выраженные процессы изменения электромагнитных характеристик заканчиваются в течение первых 200 часов после термообработки и размагничивания магнитопровода. В дальнейшем они остаются практически постоянными и не играют существенной роли в общей погрешности индуктивного датчика.

Проведенное выше рассмотрение составляющих погрешности индуктивного датчика дает возможность оценить их роль в формировании общей погрешности датчика. В большинстве случаев определяющими являются погрешность от нелинейности характеристики и температурная погрешность индуктивного преобразователя.

При работе с различными технологиями при желании автоматизировать ряд действий обращаются к различным датчикам. В изделиях из металлов важную роль играет индуктивный датчик. Что он собой представляет и зачем необходим?

Что такое индуктивный датчик?

Что это и где он нашел применение? Индуктивный датчик — это бесконтактный прибор, который используется, чтобы контролировать положение объектов, сделанных из металлов. К другим материалам он чувствительности не проявляет. Применяются бесконтактные индуктивные датчики, чтобы решать задачи АСУТП. Могут быть использованы с нормально замкнутым или разомкнутым контактом. Принцип действия базируется на редактировании параметров магнитного поля, которое создаётся катушкой индуктивности, что внутри датчика. Но все тонкости настолько многочисленны, что необходимо их обсудить отдельно.

Принцип действия

Всё базируется на изменении амплитуды колебаний используемого в индуктивном датчике генератора, когда в активную зону вносится предмет определённого размера из металлического, магнитного и ферро-магнитного материала. Так что использование может быть реализовано только с этими типами. Когда подаётся питание на конечный выключатель, расположенный в его области чувствительности, то образуется магнитное поле. Оно наводит в материале вихревые токи, влияние которых меняет амплитуду колебаний генератора. В конечном результате таких преобразований получается аналоговый выходной сигнал. Его величина меняется и зависит от расстояния между контролируемым предметом и датчиком. Триггер Шмитта превращает аналоговый сигнал в логический. Индуктивный датчик перемещения играет важную роль для механизмов, которые отслеживают изменение местоположения металлических деталей. Встретить подобные устройства вы можете в автомобильных конвейерах. Индуктивный датчик положения поможет определить, расположен ли предмет так, как должен. Если ответ отрицательный, то будут предприняты действия, предусмотренные программой, чтобы всё было так, как необходимо для полноценной и правильной работы конвейера.

Построение индуктивного датчика

Из чего состоит данный механизм? Бесконтактные индуктивные датчики имеют такие основные узлы:

  1. Генератор. Создаёт электромагнитное поле, которое необходимо для взаимодействия с объектом.
  2. Триггер Шмитта. Он обеспечивает гистерезис, когда происходит переключение.
  3. Усилитель. Занимается увеличением амплитуды сигнала, чтобы он достиг необходимого значения.
  4. Светодиодный индикатор. Информирует о состоянии выключателя. Также с его помощью обеспечивается контроль работоспособности и указывает на оперативность настройки.
  5. Компаунд. Необходим для защиты от попадания вовнутрь воды и твердых частиц.
  6. Корпус. С его помощью обеспечивается монтаж датчика и его защита от различных механических воздействий. Изготавливается из полиамида или латуни и комплектуется крепежными изделиями.

Определения

Когда необходимо использовать индуктивный датчик, следует разбираться и в терминологическом минимуме, который нужен для приятной и комфортной работы. Итак, что следует понимать:

  1. Активная зона. Это область перед чувствительной поверхностью индуктивного датчика, где наибольшим образом сконцентрировалось магнитное поле. Диаметр данной площади обычно равен размеру самого прибора.
  2. Номинальное расстояние переключения. Это теоретическая величина расстояния активной зоны, которая не учитывает разброс производственных параметров индуктивного датчика, температурный режим и подаваемое напряжение питания.
  3. Рабочий зазор. Это расстояние, которое гарантирует надежную работу прибора в определённом диапазоне напряжения и температуры.
  4. Поправочный коэффициент. Это показатель, который корректирует значение рабочего зазора, в зависимости от вида металла, из которого был создан объект воздействия.

Достоинства

Почему индуктивные датчики пользуются значительной популярностью? Этому способствует целый ряд параметров, которыми они обладают:

  1. Прочность и простота конструкции, а также отсутствие скользящих контактов.
  2. Индуктивный датчик может быть подключен к источникам промышленной частоты.
  3. Имеют довольно большую выходную мощность, которая может составлять десятки Ватт.
  4. Обладают значительной чувствительностью.

Погрешности

Но при всех плюсах индуктивные датчики имеют и минусы. Самый главный из них - это погрешность. Выделяют такие недостатки:

  1. Погрешность, которая зависит от нелинейной характеристики. В приборе используется принцип индуктивного преобразования величины, что базируется на работе датчиков, которые имеют свой диапазон, из-за чего и возникает данная проблема.
  2. Температурная погрешность. Является случайной составляющей. Поскольку работа прибора зависит от температуры используемых датчиков, то погрешность может достигать значительных значений. Поэтому высокую важность имеет среда работы механизма. Работа индуктивного датчика обычно осуществляется при показателе в 25 градусов в хорошо вентилируемом помещении. Значительное изменение температуры в большее или меньшее значение является нежелательным.
  3. Погрешность из-за влияния других электромагнитных полей. Является случайной составляющей. Возникает из-за того, что на индуктивный датчик действуют внешние электромагнитные поля, которые могут сильно влиять на работу прибора. Чтобы избежать таких случаев, в промышленности электроустановки почти всегда используют частоту в 50 Гц.

Для минимизации вероятности возникновения погрешности необходимо качественно прорабатывать все нюансы.

Индуктивные датчики применяются для преобразования в электрический сигнал небольших линейных и угловых перемещений. Простейший индуктивный датчик (называемый однотактным) представляет собой катушку индуктивности 1 с железным сердечником 2 и подвижным якорем З, отделенным от сердечника воздушным зазором (рис. 2-4). Катушка индуктивности с сердечником, называемая статором датчика, закрепляется неподвижно, а якорь соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовывать в электрический сигнал. При перемещении якоря изменяется сопротивление магнитной цепи датчика вследствие изменения воздушного зазора δ между статором и якорем (при вертикальном движении якоря) или площади воздушного зазора S (при горизонтальном движении якоря).

Сопротивление магнитной цепи датчика складывается из сопротивления участка цепи со сталью Rст и сопротивления участка цепи с воздушным зазором Rв. Магнитное сопротивление участка цепи со сталью:

Rст = Lст/(mст/Sст),

где Lст - суммарная длина средней магнитной силовой линии в стали сердечника и якоря; Sст - площадь поперечного сечения стального сердечника; mст - магнитная проницаемость материала сердечника и якоря.

Магнитное сопротивление участка цепи с воздушным зазором:

Rст = 2δ/(μоSв), где δ - длина воздушного зазора между статором и якорем датчика; μо - проницаемость воздуха; Sв - площадь поперечного сечения воздушного зазора. Так как μо>>μо, то Rст 0 . сопротивление магнитной цепи датчика будет определяться в основном сопротивлением участка цепи с воздушным зазором:

Rм ≈ Rв = 2δ/(;μоSr)

Переменный магнитный поток Ф, возникающий при подключении источника питания к катушке датчика, равен

где I - ТОК в цепи катушки датчика; w - число витков катушки датчика,w - число витков катушки датчика.

Индуктивность катушки датчика (если пренебречь потоком рассеяния):

L = ωФ/I = [ω 2 /2δ]μS

Формула (2-1) устанавливает функциональную связь между перемещением якоря индуктивного датчика (при перемещении изменяется или d, или Sв) и индуктивностью катушки датчика.

У индуктивных датчиков с изменяющимся воздушным зазором статическая характеристика L=f(x) нелинейная (рис. 2-5, 1) и при больших зазорах (δ > 1 мм) чувствительность датчика уменьшается. Такие датчики используют при ограниченном диапазоне перемещения якоря - до 1 мм, а начальная рабочая точка выбирается в области характеристики, где она имеет наибольшую крутизну и приближается к линейной чувствительность датчиков с изменяющимся воздушным зазором высокая – до 0,2 мкм.

У индуктивных датчиков с изменяющейся площадью воздушного зазора статическая характеристика L=f(Sв) линейная, диапазон перемещения якоря шире - до 8 мм, но чувствительность меньше - до 0,3 мкм (рис. 2-5, 2). Изменение индуктивности катушки датчика L приводит к изменению ее индуктивного сопротивления: ХL = ωL, где ω - круговая частота питающего напряжения. Следовательно, происходит и изменение полного сопротивления катушки: Z = √Rа*2+XL*2, где Ra - активное сопротивление катушки датчика.

Ток I, протекающий в катушке датчика под действием приложенного переменного напряжения U, также изменяется при перемещении якоря и может служить выходным сигналом датчика (выходной характеристикой). Условно принцип работы индуктивных датчиков можно представить в виде цепи преобразований происходящих при перемещении якоря датчика (для датчиков с изменяющимся воздушным зазором):

x → δ → Rm → Ф↓ → L↓ → Xl↓ → Z↓ → I

Однотактные индуктивные датчики имеют высокую чувствительность и надежность, практически неограниченный срок службы, большую мощность выходного сигнала (до нескольких ватт), что позволяет в ряде случаев не применять усилитель. К недостаткам индуктивных датчиков следует отнести нереверсивность характеристики, небольшой диапазон перемещений якоря, наличие тока холостого хода и электромагнитной силы притяжения между якорем и статором, влияние колебаний амплитуды и частоты напряжения питания. Эти недостатки полностью или частично отсутствуют у дифференциальных индуктивных датчиков.

Дифференциальный индуктивный датчик

Он содержит два статора с катушками индуктивности L1 и L2 и один общий якорь. При перемещении якоря индуктивность одной катушки увеличивается, другой - уменьшается. Катушки индуктивности включаются или в дифференциальную измерительную схему, или как смежные плечи в мостовую измерительную схему.

Дифференциальные индуктивные датчики по сравнению с однотактными имеют более высокую точность преобразования и чувствительность. Статическая характеристика этих датчиков линейная и реверсивная.

Трансформаторные датчики

Они являются разновидностью индуктивных датчиков. Трансформаторный датчик можно рассматривать как трансформатор, у которого коэффициент трансформации изменяется за счет изменения коэффициента взаимоиндуктивности М между его обмотками. Такие датчики применяются для преобразования в электрический сигнал (напряжение переменного тока) небольших линейных и угловых перемещений.

На рис. 2-6 представлен дифференциальный трансформаторный датчик с угловым перемещением якоря. Первичная обмотка датчика ω1 расположена на центральном стержне сердечника 1 и подключена к источнику переменного тока. Вторичные обмотки ω2а и ω2б расположены на крайних стержнях и соединяются последовательно и встречно. Ток, протекающий по ω1 создает переменный магнитный поток Ф1, разветвляющийся на два потока: Ф1а и Ф1б. При симметричном положении якоря 2 по отношению к статору датчика (сердечник 1 с обмотками ω1, ω2а и ω2б) магнитные потоки равны: Ф1а=Ф1б=Ф1/2, и ЭДС, индуцирующиеся во вторичных обмотках, будут также равны: Е2а=Е2б.



Так как фазы этих ЭДС противоположны (за счет встречного включения обмоток ω2а и ω2б), то напряжение на выходе датчика будет равно нулю: Uвых = Е2а - Е2б=О. При повороте якоря, который механически связан с подвижной частью объекта управления, изменяются площади поперечного сечения воздушных зазоров и между якорем и крайними стержнями сердечника. В результате этого изменятся сопротивления RM1 и RM2 магнитных цепей потоков Ф1а и Ф1б, да и сами потоки: один из них увеличивается на ΔФ, а другой уменьшится на ΔФ. Индуцирующие во вторичных обмотках ЭДС Е2а и Е2б также изменятся пропорционально изменению потоков ФIа и Ф2б. На выходе датчика появится напряжение Uвых, амплитуда которого равна разности амплитуд ЭДС Е2а и Е2б: Uвых = Е2а-Е2б, а фаза выходного напряжения будет определяться фазой большей из ЭДС.

Таким образом, характеристика такого датчика будет реверсивной и линейной (в рабочей зоне). Чувствительность дифференциального трансформаторного датчика в два раза выше, чем у однотактного, рабочая зона в два раза больше, и при симметричном положении якоря выходное напряжение равно нулю. Точность преобразования у дифференциальных трансформаторных датчиков выше, так как ввиду симметричности конструкции и схемы датчика частично взаимно компенсируются погрешности от изменения окружающей температуры и частоты источника питания.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»