Интерференция - что такое? Что такое интерференция и дифракция? Явление интерференции Что такое интерференция в физике

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

В этой статье рассматривается такое явление физики, как интерференция: что такое, когда возникает и как применяется. Также подробно рассказывается о смежном понятии волновой физики - дифракции.

Виды волн

Когда в книге или в разговоре возникает слово «волна», то, как правило, сразу представляется море: синий простор, безмерная даль, одна за другой на берег набегают соленые валы. Житель степей представит себе другой вид: безбрежный простор травы, она колышется под ласковым ветерком. Кто-то еще вспомнит волны, рассматривая складки тяжелой портьеры или трепетание флага в солнечный день. Математик подумает о синусоиде, любитель радио - об электромагнитных колебаниях. Все они имеют различную природу и относятся к разным видам. Но неоспоримо одно: волна - это состояние отклонения от равновесия, превращения какого-то «гладкого» закона в колебательный. Именно для них применимо такое явление, как интерференция. Что такое и как она возникает, рассмотрим чуть позже. Сначала разберёмся, какими бывают волны. Перечислим следующие виды:

  • механические;
  • химические;
  • электромагнитные;
  • гравитационные;
  • спиновые;
  • вероятностные.

С точки зрения физики, волны переносят энергию. Но случается, что перемещается и масса. Отвечая на вопрос о том, что такое интерференция в физике, следует отметить, что она характерна для волн абсолютно любой природы.

Признаки различия волн

Как ни странно, но единого определения волны не существует. Их виды настолько разнообразны, что только типов классификации более десятка. По каким же признакам различают волны?

  1. По способу распространения в среде (бегущие или стоячие).
  2. По характеру самой волны (колебательные и солитоны отличны именно по этому признаку).
  3. По типу распределения в среде (продольные, поперечные).
  4. По степени линейности (линейные или нелинейные).
  5. По свойствам среды, в которой они распространяются (дискретные, непрерывные).
  6. По форме (плоские, сферические, спиральные).
  7. По особенностям физической среды распространения (механические, электромагнитные, гравитационные).
  8. По направлению колебания частиц среды (волны сжатия или сдвига).
  9. По времени, которое требуется на возбуждение среды (одиночные, монохроматические, волновой пакет).

И к любому типу этих возмущений среды применима интерференция. Что такое особенное содержится в этом понятии и почему именно это явление делает наш мир таким, какой он есть, расскажем после приведения характеристик волны.

Характеристики волны

Вне зависимости от типа и вида волн, у них всех есть общие характеристики. Вот список:

  1. Гребень - это своего рода максимум. Для волн сжатия это место наибольшей плотности среды. Представляет собой наибольшее положительное отклонение колебания от состояния равновесия.
  2. Ложбина (в некоторых случаях долина) - это обратное гребню понятие. Минимум, наибольшее отрицательное отклонение от состояния равновесия.
  3. Временная периодичность, или частота - это время, за которое волна пройдет от одного максимума к другому.
  4. Пространственная периодичность, или длина волны - это расстояние между соседними пиками.
  5. Амплитуда - это высота пиков. Именно данное определение понадобится, чтобы разобраться, что такое интерференция волн.

Мы очень подробно рассмотрели волну, ее характеристики и различные классификации, ибо понятие «интерференция» невозможно объяснить без четкого понимания такого явления, как возмущение среды. Напоминаем, что интерференция имеет смысл только для волн.

Взаимодействие волн

Теперь мы вплотную подошли к понятию «интерференция»: что такое, когда возникает и как ее определить. Все перечисленные выше виды, типы и характеристики волн относились к идеальному случаю. Это были описания «сферического коня в вакууме», то есть неких теоретических конструкций, невозможных в реальном мире. Но на практике все пространство вокруг пронизано различными волнами. Свет, звук, тепло, радио, химические процессы - это среды. И все эти волны взаимодействуют. Надо отметить одну особенность: чтобы они могли повлиять друг на друга, у них должны быть схожие характеристики.

Волны звука никоим образом не смогут интерферировать со светом, а радиоволны никак не взаимодействуют с ветром. Конечно, влияние все равно есть, но оно настолько мало, что его действие просто не учитывается. Другими словами, при объяснении, что такое интерференция света, предполагается, что один фотон влияет на другой при встрече. Итак, подробнее.

Интерференция

Для многих видов волн действует принцип суперпозиции: встречаясь в одной точке пространства, они взаимодействуют. Обмен энергией отображается на изменении амплитуды. Закон взаимодействия следующий: если встречаются в одной точке два максимума, то в конечной волне интенсивность максимума увеличивается вдвое; если встречаются максимум и минимум, то итоговая амплитуда обращается в ноль. Это и есть наглядный ответ на вопрос о том, что такое интерференция света и звука. По сути, это явление наложения.

Интерференция волн с разными характеристиками

Описанное выше событие представляет встречу двух одинаковых волн в линейном пространстве. Однако две встречные волны могут иметь разные частоты, амплитуды, длины. Как представить итоговую картину в таком случае? Ответ кроется в том, что результат будет не совсем похож на волну. То есть строгий порядок чередования максимумов и минимумов будет нарушен: в какой-то момент амплитуда будет максимальной, в следующий - уже меньше, потом встретятся максимум и минимум и результат обратится в ноль. Однако, какими бы сильными ни были различия двух волн, амплитуда все равно рано или поздно повторится. В математике принято говорить о бесконечности, но в реальности силы трения и инерция могут остановить само существование результирующей волны до того, как картина пиков, долин и равнин повторится.

Интерференция волн, встречающихся под углом

Но, помимо собственных характеристик, у реальных волн может различаться положение в пространстве. Например, при рассмотрении вопроса о том, что такое интерференция звука, это необходимо учитывать. Представьте: идет мальчик и дует в свистульку. Он посылает звуковую волну впереди себя. А мимо него проезжает другой мальчик на велосипеде и звенит в звонок, чтобы пешеход посторонился. В месте встречи этих двух звуковых волн они пересекаются под некоторым углом. Как рассчитать амплитуду и форму конечного колебания воздуха, который долетит, например, до ближайшей торговки семечками бабушки Маши? Тут в силу вступает векторная составляющая звуковой волны. И складывать или вычитать в данном случае надо не только величины амплитуды, но и векторы распространения этих колебаний. Надеемся, что бабушка Маша при этом не будет сильно кричать на шумящих ребят.

Интерференция света с разной поляризацией

Бывает и так, что в одной точке встречаются фотоны разной поляризации. В этом случае тоже следует учитывать векторную составляющую электромагнитных колебаний. Если они не взаимно перпендикулярны или один из пучков света имеет круговую или эллиптическую поляризацию, то взаимодействие вполне возможно. На этом принципе строится несколько способов определения оптической чистоты кристаллов: в перпендикулярно поляризованных пучках не должно быть никакого взаимодействия. Если картина искажается, то кристалл неидеален, он изменяет поляризацию пучков, а значит, выращен неправильно.

Интерференция и дифракция

Взаимодействие двух пучков света приводит к их интерференции, в итоге наблюдатель видит ряд светлых (максимумов) и темных (минимумов) полос или колец. А вот взаимодействие света и вещества сопровождается другим явлением - дифракцией. Оно основано на том, что свет разной длины волны иначе преломляется средой. Например, если длина волны 300 нанометров, то угол отклонения составляет 10 градусов, а если 500 нанометров - уже 12. Таким образом, когда на призму из кварца падает свет от солнечного луча, красный преломляется не так, как фиолетовый (их длины волн различаются), и наблюдатель видит радугу. Это ответ на вопрос о том, что такое интерференция и дифракция света и чем они отличаются. Если направить на ту же призму монохроматическое излучение от лазера, никакой радуги не будет, так как нет фотонов различной длины волны. Просто луч отклонится от первоначального направления распространения на некоторый угол, и все.

Применение явления интерференции на практике

Возможностей получить практическую пользу из этого сугубо теоретического явления очень много. Здесь будут перечислены лишь основные из них:

  1. Исследование качества кристаллов. Чуть выше мы рассказывали об этом.
  2. Выявление погрешностей линз. Часто они должны быть отшлифованы в идеальной сферической форме. Наличие каких-либо дефектов обнаруживают именно с помощью явления интерференции.
  3. Определение толщины пленок. В некоторых видах производства очень много значит постоянная толщина пленки, например пластиковой. Определить ее качество позволяет именно явление интерференции вместе с дифракцией.
  4. Просветление оптики. Очки, линзы фотоаппаратов и микроскопов покрывают тонкой пленкой. Таким образом, электромагнитные волны определенной длины просто отражаются и накладываются сами на себя, уменьшая помехи. Чаще всего просветление делается в зеленой части оптического спектра, так как именно эту область человеческий глаз воспринимает лучше всего.
  5. Изучение космоса. Зная законы интерференции, астрономы способны разделить спектры двух близко расположенных звезд и определить их составы и расстояние до Земли.
  6. Теоретические исследования. Когда-то именно с помощью явления интерференции удалось доказать волновую природу элементарных частиц, таких как электроны и протоны. Этим была подтверждена гипотеза корпускулярно-волнового дуализма микромира и положено начало квантовой эре.

Надеемся, что с данной статьёй ваши познания о наложении когерентных (испускаемых источниками, имеющими постоянную разность фаз и одинаковую частоту) волн значительно расширились. Это явление и называется интерференцией.

Опыт Юнга является первым интерференционным опытом, получившим объяснение на основе волновой теории. В опыте Юнга свет от источника проходит через две близко расположенные щели. Световые пучки, расширяясь из-за дифракции, падают на удаленный экран. В области перекрытия световых пучков возникают интерференционные полосы.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны (рисунок 6). Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рисунок 7).

Ньютон не смог с точки зрения корпускулярной теории объяснить, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов.

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S , падал на экран с двумя близко расположенными щелями S 1 и S 2 (рисунок 8). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Рисунок 8

Схема интерференционного опыта Юнга

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S 1 и S 2 , которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S . При симметричном расположении щелей вторичные волны, испускаемые источниками S 1 и S 2 , находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r 1 и r 2 . Следовательно, фазы колебаний, создаваемых волнами от источников S 1 и S 2 в точке P , вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S 1 и S 2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции .

Монохроматическая (или синусоидальная) волна , распространяющаяся в направлении радиус-вектора , записывается в виде

Приборов, которые способны были бы следить за быстрыми изменениями поля световой волны в оптическом диапазоне, не существует; наблюдаемой величиной является поток энергии, который прямо пропорционален квадрату амплитуды электрического поля волны. Физическую величину, равную квадрату амплитуды электрического поля волны, принято называть интенсивностью : I = A 2 .

Несложные тригонометрические преобразования приводят к следующему выражению для интенсивности результирующего колебания в точке P :

где Δ = r 2 – r 1 – так называемая разность хода .

Из этого выражения следует, что интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ = m λ (m = 0, ±1, ±2, ...). При этом I max = (a 1 + a 2) 2 > I 1 + I 2 . Интерференционный минимум (темная полоса) достигается при Δ = m λ + λ / 2. Минимальное значение интенсивности I min = (a 1 – a 2) 2 < I 1 + I 2 . На рисунке 9 показано распределение интенсивности света в интерференционной картине в зависимости от разности хода Δ.

В частности, если I 1 = I 2 = I 0 , т. е. интенсивности обеих интерферирующих волн одинаковы, выражение (*) приобретает вид:

При смещении вдоль координатной оси y на расстояние, равное ширине интерференционной полосы Δl , т. е. при смещении из одного интерференционного максимума в соседний, разность хода Δ изменяется на одну длину волны λ. Следовательно,

где ψ – угол схождения «лучей» в точке наблюдения P . Выполним количественную оценку. Допустим, что расстояние d между щелями S 1 и S 2 равно 1 мм, а расстояние от щелей до экрана Э составляет L = 1 м, тогда ψ = d / L = 0,001 рад. Для зеленого света (λ = 500 нм) получим Δl = λ / ψ = 5 · 10 5 нм = 0,5 мм. Для красного света (λ = 600 нм) Δl = 0,6 мм. Таким путем Юнг впервые измерил длины световых волн, хотя точность этих измерений была невелика.

Следует подчеркнуть, что в волновой оптике, в отличие от геометрической оптики, понятие луча света утрачивает физический смысл. Термин «луч» употребляется здесь для краткости для обозначения направления распространения волны. В дальнейшем этот термин будет употребляться без кавычек.

В эксперименте Ньютона (рисунок 6) при нормальном падении волны на плоскую поверхность линзы разность хода приблизительно равна удвоенной толщине 2h воздушного промежутка между линзой и плоскостью. Для случая, когда радиус кривизны R линзы велик по сравнению с h, можно приближенно получить:

(6)

где r – смещение от оси симметрии. При написании выражения для разности хода следует также учесть, что волны 1 и 2 отражаются при разных условиях. Первая волна отражается от границы стекло–воздух, а вторая – от границы воздух–стекло. Во втором случае происходит изменение фазы колебаний отраженной волны на π, что эквивалентно увеличению разности хода на λ / 2. Поэтому

(7)

При r = 0, то есть в центре (точка соприкосновения) Δ = λ / 2; поэтому в центре колец Ньютона всегда наблюдается интерференционный минимум – темное пятно. Радиусы r m последующих темных колец определяются выражением

(8)

Эта формула позволяет экспериментально определить длину волны света λ, если известен радиус кривизны R линзы.

Проблема когерентности волн. Теория Юнга позволила объяснить интерференционные явления, возникающие при сложении двух монохроматических волн одной и той же частоты. Однако повседневный опыт учит, что интерференцию света в действительности наблюдать не просто. Если в комнате горят две одинаковые лампочки, то в любой точке складываются интенсивности света и никакой интерференции не наблюдается. Возникает вопрос, в каких случаях нужно складывать напряженности (с учетом фазовых соотношений), в каких – интенсивности волн, т. е. квадраты напряженностей полей? Теория интерференции монохроматических волн не может дать ответа на этот вопрос.

Реальные световые волны не являются строго монохроматическими. В силу фундаментальных физических причин излучение всегда имеет статистический (или случайный) характер. Атомы светового источника излучают независимо друг от друга в случайные моменты времени, и излучение каждого атома длится очень короткое время (τ ≤ 10 –8 с). Результирующее излучение источника в каждый момент времени состоит из вкладов огромного числа атомов. Через время порядка τ вся совокупность излучающих атомов обновляется. Поэтому суммарное излучение будет иметь другую амплитуду и, что особенно важно, другую фазу. Фаза волны, излучаемой реальным источником света, остается приблизительно постоянной только на интервалах времени порядка τ. Отдельные «обрывки» излучения длительности τ называются цугами . Цуги имеют пространственную длину, равную c τ, где c – скорость света. Колебания в разных цугах не согласованы между собой. Таким образом, реальная световая волна представляет собой последовательность волновых цугов с беспорядочно меняющейся фазой . Принято говорить, что колебания в разных цугах некогерентны . Интервал времени τ, в течение которого фаза колебаний остается приблизительно постоянной, называют временем когерентности .

Интерференция может возникнуть только при сложении когерентных колебаний, т. е. колебаний, относящихся к одному и тому же цугу. Хотя фазы каждого из этих колебаний также подвержены случайным изменениям во времени, но эти изменения одинаковы, поэтому разность фаз когерентных колебаний остается постоянной. В этом случае наблюдается устойчивая интерференционная картина и, следовательно, выполняется принцип суперпозиции полей. При сложении некогерентных колебаний разность фаз оказывается случайной функцией времени. Интерференционные полосы испытывают беспорядочные перемещения из стороны в сторону, и за время Δt их регистрации, которая в оптических экспериментах значительно больше времени когерентности (Δt >> τ), происходит полное усреднение. Регистрирующее устройство (глаз, фотопластинка, фотоэлемент) зафиксирует в точке наблюдения усредненное значение интенсивности, равное сумме интенсивностей I 1 + I 2 обоих колебаний. В этом случае выполняется закон сложения интенсивностей.

Таким образом, интерференция может возникнуть только при сложении когерентных колебаний. Для возникновения интерференции волн необходимо, чтобы волны имели одинаковую частоту и разность фаз колебаний полей в этих волнах оставалась постоянной во времени. В этом случае интерференционная картина не размывается со временем и не перемещается в пространстве. Волны, удовлетворяющие указанным условиям, называются когерентными. Самый простой способ получения когерентных волн – расщепление волны от какого-то монохроматического источника на две или несколько волн (эти волны будут когерентны, если при расщеплении, например, при отражении от зеркала, не вносится неконтролируемая разность фаз). Затем можно разными способами заставить каждую из волн пройти разный путь. Это можно сделать, либо заставив два луча пройти разные расстояния в пространстве (как в опыте Юнга), либо заставив лучи пройти одно и то же расстояние, но в средах с разным показателем преломления, изменив тем самым скорость света. В обоих случаях возникает определенная постоянная разность хода лучей, приводящая при совмещении этих лучей к интерференционной картине. Волны от двух независимых источников некогерентны и не могут дать интерференции. Т. Юнг интуитивно угадал, что для получения интерференции света нужно волну от источника разделить на две когерентные волны и затем наблюдать на экране результат их сложения. Так делается во всех интерференционных схемах. Однако, даже в этом случае интерференционная картина исчезает, если разность хода Δ превысит длину когерентности c τ.

1. Взаимоподавление одновременно выполняемых процессов (прежде всего относящихся к познавательной сфере), обусловленное ограниченным объемом распределяемого внимания. 2. Ухудшение сохранения запоминаемого материала в результате воздействия (наложения) другого материала, с коим оперирует субъект. Изучается в контексте исследований памяти и процессов научения (в связи с проблемой навыка). В экспериментах интерферирующее влияние одного материала на другой проявляется либо в уменьшении объема и ухудшении качества воспроизводимого материала, либо в увеличении времени решения задачи (при интерференции селективной). Понятие интерференции лежит в основе ряда психологических теорий забывания. Самое распространенное объяснение интерференции исходит из рефлекторной теории И. П. Павлова. В зависимости от последовательности заучиваемого и интерферирующего материала различаются интерференция ретроактивная и проактивная. В зависимости от характера интерферирующего материала выделяются интерференция вербальная, моторно-акустическая, зрительная и пр. Согласно французскому психологу М. Фуко, интерферирующее воздействие материала на ответы вызывается прогрессивным (для интерференции проактивной) или регрессивным (для интерференции ретроактивной) внутренним торможением.

ИНТЕРФЕРЕНЦИЯ

от лат. inter - взаимно, между собой + ferio - ударяю, поражаю) - взаимодействие 2 или большего числа одновременных или последовательных процессов, при котором возникает нарушение (подавление), по крайней мере, 1 из них. Иногда И. называют любое взаимодействие, в т. ч. и не ведущее к нарушению участвующих в нем процессов. Наиболее интенсивно феномены И. исследуются в области психологии познавательных процессов: восприятия, внимания, памяти, мышления. Исследования показывают, что И. возникает с тем большей вероятностью, чем выше совокупные требования познавательных и исполнительных процессов к ограниченному объему внимания (см. Внимания объем). См. Интерференция навыков.

Добавление ред.: Помимо приведенного варианта этимологии термина "И." существует еще один, на который обратил внимание Д. Г. Элькин (1972). Слово "И." происходит от лат. слов inter + few - несу, что в целом означает "перенос".

ИНТЕРФЕРЕНЦИЯ

В переводе со старофранцузского означает: мешать друг другу. Следовательно: 1. Очень общее значение: любой процесс, в котором имеется некоторый конфликт между операциями или действиями, который снижает или сводит на нет результат действий. В непрофессиональных понятиях: вещи, стоящие на пути других вещей. 2. В акустике и оптике – уменьшение амплитуды сложной волнообразной формы, когда две или более типов волн картины в различных фазах поступают одновременно. 3. В социальной психологии – конфликт между противоположными эмоциями, мотивами, ценностями и т.д. 4. В научении и обусловливании – конфликт связей, сформированных между стимулами и реакциями. Обычно в этом случае термин употребляется для обозначения обстоятельств, когда имеются две несовместимые реакции и единственный стимул. Часто торможение (особенно в значении 3) является допустимым синонимом для этого значения; см., например, реципрокное торможение. 5. В научении и теориях памяти – конфликт между информацией в памяти, при котором (а) новую информацию трудно усвоить из-за предыдущего опыта (см. здесь проективная интерференция) или (б) старую информацию трудно припомнить из-за поступающей формации; см. здесь ретроактивная интерференция. Иногда в таких случаях можно встретить торможение (в значении 4), употребляемое как синоним отличие от значения 4, описанного выше, этот способ употребления вводит в заблуждение, особенно в том смысле, что теоретическое определение этих явлений памяти связано с тем, что они вызываются "вещами, встающими на пути других вещей", а не "вещами, ограничивающими другие вещи", как подразумевается в термине торможение. 6. Блок или барьер, создающий трудности для другого человека.

ИНТЕРФЕРЕНЦИЯ

от лат. inter - между + ferio - ударяю, поражаю, ferens (ferentis) - несущий, переносящий] - 1) взаимодействие двух или большего числа процессов, при котором возникает нарушение (подавление) по крайне мере одного из них

ИНТЕРФЕРЕНЦИЯ

от лат. inter - взаимно, между собой и ferio - ударяю, поражаю) - взаимодействие двух или большего числа процессов, при котором возникает нарушение (подавление) по крайней мере одного из них. Иногда И. называют любое взаимодействие, в том числе и не ведущее к нарушению участвующих в нем процессов. В психологии процессы И. исследуются в области познавательных процессов: восприятия, внимания, памяти, мышления. Исследования показывают, что И. возникает с тем большей вероятностью, чем выше совокупные требования познавательных и исполнительных процессов к ограниченному объему внимания. В инженерной психологии и эргономике большое внимание уделяется изучению И. навыков. Она состоит в том, что один тип обучения может препятствовать достижению успехов в другом типе обучения. Одна из причин И. навыков - т. н. ассоциативное торможение, которое заключается в следующем. Всякое движение осуществляется в ответ на определенный сигнал. Допустим, оператор выработал какое-то движение в ответ на зажигание лампочки. Такие движения нужны человеку, работающему у пульта управления. Затем вырабатывается новое движение, противоположное первому по направлению (или другим признакам), но его сигналом остается та же лампочка. В этом случае формирование нового движения затруднено. Общность сигнала для обоих движений начинает «сбивать» человека, ранее освоенные движения будут тормозить образование новых. Такое торможение и называется ассоциативным. Условиями, предотвращающими И. навыков, являются: 1) прочность «старого» навыка: чем прочнее он усвоен, тем быстрее преодолевается его отрицательное влияние на новый; это объясняется тем, что движения, входящие в прочный навык, очень хорошо специализированы; 2) сознательное усвоение прочного навыка: чем точнее человек проанализирует особенности движений, характерных для нового навыка, тем быстрее он преодолевает отрицательное влияние «старого», перестроит его; 3) при создании средств отображения информации и органов управления следует избегать, ситуаций, в которых нарушены привычные соотношения перцептивного и моторного полей, тем более ситуаций, в которых от оператора требуется переход от одного типа соотношений к другому. Противоположным по значению понятию «И. навыков» является понятие «перенос навыков».

Интерференция

лат. «перенос, перемешивание») – конфликт в сознании индивида между противоположными эмоциями, мотивами, ценностями. Ср. изображение А. Пушкиным переживаний Евгения Онегина перед дуэлью; М. Шолоховым в «Поднятой целине» – переживаний Майданникова перед вступлением в колхоз.

Максимилиан Лонгвиль, обеспокоенный довольно основательными подозрениями Клары относительно характера Эмилии, то поддавался порывам юношеской страсти, то колебался, желая узнать и испытать женщину, которой собирался вверить свое счастье (О. Бальзак, Загородный бал).

А во мне разум борется с разумом, страсть идет против страсти, я распался на два разума, страсть моя разделилась надвое, и страшное междоусобие это не кончилось, и я не знаю, чем оно кончится (А. Дружинин, Полинька Сакс).

Интерференция

лат. inter - между, среди, взаимно; ferentis - несущий, переносящий) – 1. взаимное усиление или ослабление влияния нескольких одновременно действующих факторов либо каких-то их аспектов (волн, вирусов, причин болезни, процессов памяти, эмоций, мотивов и др.); 2. в психопатологии - нередко используется частичный синоним термина – коморбидность; последний термин обычно обозначает частоту, с которой одни симптомы расстройства или болезненного явления встречаются одновременно, как часто одно расстройство сочетается с каким-то другим, нередко указывая тем самым, что их связи не случайны, а опосредованы некими неизвестными переменными. Большей частью изучение коморбидности ограничивается голой статистикой, не имеющей отношения к каузальным, качественным аспектам взаимодействия изучаемых переменных, как это особенно свойственно бихевиоризму (констатируется факт случайности или вероятности того, что, действительно, имеет место какая-то неизвестная внутренняя связь между переменными); 3. самое общее значение – любой процесс, в котором имеется некоторый конфликт между операциями или действиями, который снижает или сводит на нет результат действий; 4. в непрофессиональном употреблении – вещи, стоящие на пути других вещей; 5. в когнитивной психологии – влияние на процесс фиксации в памяти текущих или прошлых впечатлений.

Интерференция

англ. interference, от interfere - сталкиваться друг с другом; интер- + лат. ferio ударять, поражать) - взаимоподавление одновр. осуществляющихся процессов, прежде всего относящихся к познавательной сфере, обусловленное ограниченным объемом распределяемого внимания. Происхождение понятия И. связано с разработкой метода изучения И. как явления функц., речевого. Метод изучения И. впервые был предложен и описан в 1953 г. амер. лингвистом У. Вайнрайхом в книге «Языковые контакты», к-рая получила широкое признание в академической среде и стала рассматриваться в кач. основополагающего исследования в области билингвизма. И. рассматривается в связи с процессами взаимодействия языков как явление, возникающие в фонетике, грамматике и лексике контактирующих языков. В работе У. Вайнрайха излагаются психол. и лингвистические основы теории двуязычия; освещается роль социальной и культурной среды контакта, социол. и языковые последствия, а также методика исследования языковых контактов. В настоящее время термином «И.» в работах, касающихся культуры языка и методики преподавания языков, называются нежелательные изменения в структуре любого языка, родного или изучаемого, вызванные влиянием одного или другого. Они нарушают языковую норму и особенно ярко проявляются в условиях активного двуязычия. Хотя социопсихолингвистика накопила значительный фактический материал и выработала необходимые теорет. основы исследования и преодоления И., несмотря на огромное количество трудов, посвященных решению этой проблемы, интерферология как наука, изучающая И., до сих пор не имеет общепринятого определения даже самого объекта своего исследования. И. определяется то как языковое взаимопроникновение (Мартине, 1963), то как наложение 2 языковых систем одна на другую (Хауген, 1972), то как отклонение от норм др. языка под влиянием системы первого (А. Е. Карлинский, М. М. Михайлов), а также как перенесение элементов одного языка на другой (трансференция) (Э. М. Ахунзянов) или их проникновение (В. Д. Стариченок) либо как бессознательное или осознанное смешивание систем 2 языков, вследствие чего происходит отклонение от общепринятых норм в том языке, к-рый в данной ситуации использует билингв в процессе коммуникации (Шинкаренко, 1995). Природа данного явления обусловлена влиянием неск. факторов: индивидуально-психол., социальных, историко-этнических и др. И. может проявляться двояко: во-первых, при непосредственном перенесении полной и неполной речевой способности в новые условия и, во-вторых, при ошибочном предвидении существования аналогии в изучаемом языке. Причиной возникновения такого переноса является свойство нашего сознания использовать, узнавать предметы или явления, сопоставляя их с ранее известными, устанавливать сходство и отличие, отбирая именно отличительные признаки. С т. зр. психологии, И. связана с таким взаимодействием навыков, при к-ром ранее приобретенные навыки имеют влияние на создание новых. В зависимости от критериев, на к-рых базируется разграничение, принято различать след. типы И.: по происхождению - внутреннюю и внешнюю; по характеру переноса навыков с родного языка - прямую и косвенную; по характеру проявлений - явную и скрытую; по лингвистической природе - фонетическую, грамматическую, лексико-семантическую (или лексическую и семантическую). Порожденная контактированием языковых систем И. приводит к разного рода отклонениям, нарушениям норм взаимодействующих языков, не задевая, однако, сами языковые системы. Этим И. принципиально отличается от общеизвестного понятия заимствования во всяческих его разновидностях, задевающих системные связи (гл. о. словарь и грамматику) контактирующих языков. Поскольку лексика есть наиболее чуткой подсистемой языка по отношению к экстралингвистическим факторам, поэтому любые, даже самые маленькие, изменения в социальной жизни непосредственно и очень быстро отображаются в лексике. Взаимодействие языков и разнообразные процессы, вызванные таким влиянием, также регистрируются в лексике. Перенесение лексических норм своего языка в изучаемый (или наоборот) в какой-то степени приводит к перестройке речевых моделей, к замене дифференцирующих признаков слов др. языка отличительными признаками первого, что в конечном результате в нек-рой степени искажает или затеняет смысл сказанного. Но даже самые грубые интерферентные отклонения в речи не приводят к разрушению коммуникативного акта; взаимопонимание разговаривающих происходит независимо от степени И. Для обозначения этой особенности И. близкородственных языков В. Н. Манакин вводит термин «семантическая индифферентность И.». При этом, как отмечает В. И. Кононенко, интерферирующее влияние прежде всего родного языка на другой имеет социальные последствия, поскольку неправильная, смешанная речь может создавать впечатление о недостаточном культурно-образовательном уровне говорящего, вызывая у него психол. дискомфорт. Т. о., проявления И. снижают общий уровень культуры речи билингвов. На лексико-семантическом уровне И. определяется: несовпадением семантических объемов слов 2 языков; разной иерархией их значений; несовпадением схем лексического соединения и систем ассоциативных связей в родном и изучаемом языках; неодинаковым количественным составом и семантической разницей между членами синонимического ряда контактирующих языков; смещением паронимических лексем и др. подобными факторами. Характер и степень И. предопределяется тем, на каком уровне она проявляется. Большинство исследователей склоняются к тому, что рядом с фонетическим, лексико-семантический уровень наиболее ярко отображает влияние родного языка билингва, поскольку особенности лексики (ее открытость, динамичность, связь с др. уровнями языка) способствуют проникновению элементов одной языковой системы в другую. В условиях близкородственного двуязычия, по мнению Г. П. Ижакевич, И. на морфологическом и словообразовательном уровнях практически не ограничена. По мнению Г. В. Колшанского, В. М. Русанивского, К. К. Цилуйко и др., целенаправленное и всестороннее изучение И. как явления социопсихолингвистического возможно только при условии объединения возможностей ряда науч. отраслей, центральное место среди к-рых должны занимать социолингвистика и психолингвистика. Лит.: Вайнрайх У. Одноязычие и многоязычие. Языковые контакты. Состояние и проблемы исследования. Киев, 1979. Е. В. Шинкаренко

Интерференция I Интерфере́нция (от лат. inter - взаимно, между собой и ferio - ударяю, поражаю)

1) в биологии - влияние перекреста (Кроссинговер а) гомологичных хромосом (См. Хромосомы) в одном участке на появление новых перекрестов в близлежащих к нему участках. Чаще этот вид И. препятствует возникновению нового перекреста в соседнем участке, поэтому в опытах процент двойных кроссоверных особей, как правило, оказывается ниже теоретически ожидаемого. Особенно сильно И. подавляет двойной кроссинговер при малых расстояниях между Ген ами. 2) В медицине И. вирусов - подавление действия одного вируса другим при смешанной инфекции. При этом первый вирус именуется интерферирующим, а второй - претендующим.

II Интерфере́нция

волн, сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны. И. характерна для всяких волн независимо от их природы: для волн на поверхности жидкости, упругих (например, звуковых) волн, электромагнитных (например, радиоволн или световых) волн.

Если в пространстве распространяются две волны, то в каждой точке результирующее колебание представляет собой геометрическую сумму колебаний, соответствующих каждой из складывающихся волн. Этот так называемый принцип суперпозиции соблюдается обычно с большой точностью и нарушается только при распространении волн в какой-либо среде, если амплитуда (интенсивность) волн очень велика (см. Нелинейная оптика , Нелинейная акустика). И. волн возможна, если они когерентны (см. Когерентность).

Простейший случай И. - сложение двух волн одинаковой частоты при совпадении направления колебаний в складывающихся волнах. В этом случае, если колебания происходят по синусоидальному (гармоническому) закону, амплитуда результирующей волны в какой-либо точке пространства

где A 1 и A 2 - амплитуды складывающихся волн, а φ - разность фаз между ними в рассматриваемой точке. Если волны когерентны, то разность фаз φ остаётся неизменной в данной точке, но может изменяться от точки к точке и в пространстве получается некоторое распределение амплитуд результирующей волны с чередующимися максимумами и минимумами. Если амплитуды складывающихся волн одинаковы: A 1 = A 2 , то максимальная амплитуда равна удвоенной амплитуде каждой волны, а минимальная - равна нулю. Геометрические места равной разности фаз, в частности соответствующей максимумам или минимумам, представляют собой поверхности, зависящие от свойств и расположения источников, излучающих складывающиеся волны. В случае двух точечных источников, излучающих сферические волны, эти поверхности - гиперболоиды вращения.

Другой важный случай И. - сложение двух плоских волн, распространяющихся в противоположных направлениях (например, прямой и отражённой). В этом случае получаются Стоячие волны .

Среднее за период значение потока энергии в волне пропорционально квадрату амплитуды. Поэтому, как следует из выражения для результирующей амплитуды, при И. происходит перераспределение потока энергии волны в пространстве. Характерное для И. распределение амплитуд с чередующимися максимумами и минимумами остаётся неподвижным в пространстве (или перемещается столь медленно, что за время, необходимое для наблюдений, максимумы и минимумы не успевают сместиться на величину, сравнимую с расстоянием между ними) и его можно наблюдать только в случае, если волны когерентны. Если волны не когерентны, то разность фаз φ быстро и беспорядочно изменяется, принимая все возможные значения, так что среднее значение cos φ = 0. В этом случае среднее значение амплитуды результирующей волны оказывается одинаковым в различных точках, максимумы и минимумы размываются и интерференционная картина исчезает. Средний квадрат результирующей амплитуды при этом равен сумме средних квадратов амплитуд складывающихся волн, т. е. при сложении волн происходит сложение потоков энергии или интенсивностей.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Интерференция" в других словарях:

    Интерференция … Орфографический словарь-справочник

    Интерференция: Интерференция (физика) изменение в характере звуковых, тепловых, световых и электрических явлений, объясняемое колебательным движением: в первом случае частиц звучащего тела, в остальных трех колебанием. Интерференция… … Википедия

    интерференция - (от лат. inter между, ferens (ferentis) несущий) ухудшение сохранения запоминаемого материала в результате воздействия (наложения) другого материала, с которым оперирует субъект. И. изучается в контексте исследований памяти, процессов научения (в … Большая психологическая энциклопедия

    - (ново лат., от лат. inter между, и fero несу), взаимодействие световых, звуковых в др. волн. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИНТЕРФЕРЕНЦИЯ [Словарь иностранных слов русского языка

    ИНТЕРФЕРЕНЦИЯ, взаимодействие двух или более волн, например, звуковых или световых, в результате чего создаются помехи. Лучи полностью или частично усиливают или ослабляют друг друга, приводя к искажениям. Конструктивная интерференция это… … Научно-технический энциклопедический словарь

    Влияние, радиоинтерференция, наложение Словарь русских синонимов. интерференция сущ., кол во синонимов: 3 влияние (17) … Словарь синонимов

    Интерференция. См. интерференция хиазм. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

    интерференция - и, ж. interférence, нем. Interferenz <лат. inter между + ferens (ferentis несущий. физ. Явление взаимодействия звуковых, световых или иных волн, исходящих из разных источников. Цветное фотографирование основано на интерференции. Уш. 1934.… … Исторический словарь галлицизмов русского языка

    - (от лат. inter взаимно, между собой и ferio ударяю, поражаю) взаимоподавление одновременно осуществляющихся процессов, прежде всего относящихся к познавательной сфере, обусловленное ограниченным объемом распределяемого внимания … Психологический словарь

    - [тэ], интеференции, жен. (франц. interference) (физ.). Явление взаимодействия звуковых, световых или иных волн, исходящих из разных источников. Цветное фотографирование основано на интерференции. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - (Interference) явление сложения двух волн, при котором они либо усиливают, либо ослабляют (или совсем уничтожают) друг друга, в зависимости от соотношения между фазами колебаний, с которыми приходит в данную точку каждая из волн. Взаимное… … Морской словарь

Книги

  • Интерференция и дифракция для информационной фотоники , Петров Виктор Михайлович, Шамрай Александр Валерьевич. В систематизированном виде изложены основы интерференционных и дифракционных явлений, а также принципы построения управляемых оптических фильтров, адаптивных интерферометров, широкополосных…

1. Сложение световых волн от естественных источников света.

2. Когерентные источники. Интерференция света.

3. Получение двух когерентных источников из одного точечного источника естественного света.

4. Интерферометры, интерференционный микроскоп.

5. Интерференция в тонких пленках. Просветление оптики.

6. Основные понятия и формулы.

7. Задачи.

Свет имеет электромагнитную природу, и распространение света - это распространение электромагнитных волн. Все оптические эффекты, наблюдаемые при распространении света, связаны с колебательным изменением вектора напряженности электрического поля Е, который называют световым вектором. Для каждой точки пространства интенсивность света I пропорциональна квадрату амплитуды светового вектора волны, приходящей в эту точку: I ~ Е m 2 .

20.1. Сложение световых волн от естественных источников света

Выясним, что происходит в том случае, когда в данную точку приходят две световые волны с одинаковыми частотами и параллельными световыми векторами:

При этом для интенсивности света получается выражение

При получении формул (20.1) и (20.2) мы не рассматривали вопроса о физической природе источников света, создающих колебания Е 1 и Е 2 . По современным представлениям, элементарными источниками света являются отдельные молекулы. Излучение света молекулой происходит при ее переходе с одного энергетического уровня на другой. Длительность такого излучения очень мала (~10 -8 с), а момент излучения есть событие случайное. При этом образуется ограниченный во времени электромагнитный импульс протяженностью около 3 м. Такой импульс называется цугом.

Естественными источниками света являются тела, нагретые до высоких температур. Свет такого источника представляет собой совокупность огромного числа цугов, испущенных различными молекулами в различные моменты времени. Поэтому среднее значение cosΔφв формулах (20.1) и (20.2) получается равным нулю, и эти формулы принимают следующий вид:

Интенсивности естественных источников света в каждой точке пространства складываются.

Волновая природа света в данном случае не проявляется.

20.2. Когерентные источники. Интерференция света

Результат сложения световых волн будет иным, если разность фаз для всех цугов, приходящих в данную точку, будет иметь постоянное значение. Для этого необходимо использовать когерентные источники света.

Когерентными называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства.

Световые волны, испущенные когерентными источниками, также называют когерентными волнами.

Рис. 20.1. Сложение когерентных волн

Рассмотрим сложение двух когерентных волн, испущенных источниками S 1 и S 2 (рис. 20.1). Пусть точка, для которой рассматривается сложение этих волн, удалена от источников на расстояния s 1 и s 2 соответственно, а среды, в которых распространяются волны, имеют различные показатели преломления n 1 и n 2 .

Произведение длины пути, пройденного волной, на показатель преломления среды (s*n) называется оптической длиной пути. Абсолютная величина разности оптических длин называется оптической разностью хода:

Мы видим, что при сложении когерентных волн величина разности фаз в данной точке пространства остается постоянной и определяется оптической разностью хода и длиной волны. В тех точках, где выполняется условие

cosΔφ = 1, и формула (20.2) для интенсивности результирующей волны принимает вид

В этом случае интенсивность принимает максимально возможное значение.

Для точек, в которых выполняется условие

Таким образом, при сложении когерентных волн происходит пространственное перераспределение энергии - в одних точках энергия волны увеличивается, а в других уменьшается. Это явление называется интерференцией.

Интерференция света - сложение когерентных световых волн, в результате которого происходит пространственное перераспределение энергии, приводящее к образованию устойчивой картины их усиления или ослабления.

Равенства (20.6) и (20.7) являются условиями максимума и минимума интерференции. Их удобнее записывать через разность хода.

Максимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна целому числу длин волн (четному числу полуволн).

Целое число k называется порядком интерференционного максимума.

Аналогично получается условие минимума:

Минимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна нечетному числу полуволн.

Интерференция волн проявляется особенно отчетливо, когда интенсивности волн близки. В этом случае в области максимума интенсивность в четыре раза превышает интенсивность каждой волны, а в области минимума интенсивность практически равна нулю. Получается интерференционная картина из ярких светлых полос, разделенных темными промежутками.

20.3. Получение двух когерентных источников из одного точечного источника естественного света

До изобретения лазера когерентные источники света создавали путем расщепления световой волны на два пучка, которые интерферировали между собой. Рассмотрим два таких метода.

Метод Юнга (рис. 20.2). На пути волны, идущей от точечного источника S, установлена непрозрачная преграда с двумя небольшими отверстиями. Эти отверстия и являются когерентными источниками S 1 и S 2 . Так как вторичные волны, исходящие из S 1 и S 2 , принадлежат одному волновому фронту, то они являются когерентными. В области перекрытия этих световых пучков наблюдается интерференция.

Рис. 20.2. Получение когерентных волн методом Юнга

Обычно отверстия в непрозрачной преграде делают в виде двух узких параллельных щелей. Тогда интерференционная картина на экране представляет собой систему светлых полос, разделенных темными промежутками (рис. 20.3). Светлая полоса, соответствующая

Рис. 20.3. Интерференционная картина, соответствующая методу Юнга, k - порядок спектра

максимуму нулевого порядка, располагается в центре экрана таким образом, что расстояния до щелей одинаковы. Справа и слева от нее располагаются максимумы первого порядка и т.д. При освещении щелей монохроматическим светом светлые полосы имеют соответствующий цвет. При использовании белого света максимум нулевого порядка имеет белый цвет, а остальные максимумы имеют радужную окраску, так как максимумы одного порядка для разных длин волн образуются в разных местах.

Зеркало Ллойда (рис. 20.4). Точечный источник S находится на небольшом расстоянии от поверхности плоского зеркала М. Интерферируют прямой и отраженный лучи. Когерентными источниками являются первичный источник S и его мнимое изображение в зеркале S 1 . В области перекрытия прямого и отраженного пучков наблюдается интерференция.

Рис. 20.4. Получение когерентных волн с использованием зеркала Ллойда

20.4. Интерферометры, интерференционный

микроскоп

На использовании интерференции света основано действие интерферометров. Интерферометры предназначены для измерения показателей преломления прозрачных сред; для контроля формы, микрорельефа и деформации поверхностей оптических деталей; для обнаружения примесей в газах (используются в санитарной практике для контроля чистоты воздуха в помещениях и шахтах). На рисунке 20.5 показана упрощенная схема интерферометра Жамена, который предназначен для измерения показателей преломления газов и жидкостей, а также для определения концентрации примесей в воздухе.

Лучи белого света проходят через два отверстия (метод Юнга), а затем через две одинаковые кюветы К 1 и К 2 , заполненные веществами с различными показателями преломления, один из которых известен. Если бы показатели преломления были одинаковы, то белый интерференционный максимум нулевого порядка располагался бы в центре экрана. Различие в показателях преломлений приводят к появлению оптической разности хода при прохождении кювет. В результате максимум нулевого порядка (его называют ахроматическим) смещается относительно центра экрана. По величине смещения определяют второй (неизвестный) показатель преломления. Приведем без вывода формулу для определения разности между показателями преломления:

где k - число полос, на которое сместился ахроматический максимум; l - длина кюветы.

Рис. 20.5. Ход лучей в интерферометре:

S - источник, узкая щель, освещенная монохроматическим светом; Л - линза, в фокусе которой находится источник; К - одинаковые кюветы длины l ; Д - диафрагма с двумя щелями; Э -экран

С помощью интерферометра Жамена можно определять разницу в показателях преломления с точностью до шестого десятичного знака. Столь высокая точность позволяет обнаруживать даже небольшие загрязнения воздуха.

Интерференционный микроскоп представляет собой сочетание оптического микроскопа и интерферометра (рис. 20.6).

Рис. 20.6. Ход лучей в интерференционном микроскопе:

М - прозрачный объект; Д - диафрагма; О - окуляр микроскопа для

наблюдения интерферирующих лучей; d - толщина объекта

В связи с разницей показателей преломления объекта М и среды лучи приобретают разность хода. В результате между объектом и средой образуется световой контраст (при монохроматическом свете) или объект станет окрашенным (при белом свете).

Этот прибор применяется для измерения концентрации сухого вещества, размеров прозрачных неокрашенных микрообъектов, которые неконтрастны в проходящем свете.

Разность хода определяется толщиной d объекта. Оптическую разность хода можно измерить с точностью до сотых долей длины волны, что дает возможность количественно исследовать структуру живой клетки.

20.5. Интерференция в тонких пленках. Просветление оптики

Хорошо известно, что пятна бензина на поверхности воды или поверхность мыльного пузыря имеют радужную окраску. Радужную окраску имеют и прозрачные крылья стрекоз. Возникновение окраски объясняется интерференцией световых лучей, отраженных

Рис. 20.7. Отражение лучей в тонкой пленке

от передней и задней сторон тонкой пленки. Рассмотрим это явление подробнее (рис. 20.7).

Пусть луч 1 монохроматического света падает из воздуха на переднюю поверхность мыльной пленки под некоторым углом α. В точке падения наблюдаются явления отражения и преломления света. Отраженный луч 2 возвращается в воздушную среду. Преломленный луч отражается от задней поверхности пленки и, преломившись на передней поверхности, выходит в воздушную среду (луч 3) параллельно лучу 2.

Пройдя через оптическую систему глаза, лучи 2 и 3 пересекаются на сетчатке, где и происходит их интерференция. Расчеты показывают, что для мыльной пленки, находящейся в воздушной среде, разность хода между лучами 2 и 3 вычисляется по формуле

Различие связано с тем, что при отражении света от оптически более плотной среды его фаза изменяется на π, что равносильно изменению оптической длины пути луча 2 на λ/2. При отражении от менее плотной среды изменения фазы не происходит. У пленки бензина на поверхности воды отражение от более плотной среды происходит дважды. Поэтому добавка λ/2 появляется у обоих интерферирующих лучей. При нахождении разности хода она уничтожается.

Максимум интерференционной картины получается для тех углов зрения (α), которые удовлетворяют условию

Если бы мы смотрели на пленку, освещенную монохроматическим светом, то мы бы видели несколько полос соответствующего цвета, разделенных темными промежутками. При освещении пленки белым светом мы видим интерференционные максимумы различных цветов. Пленка при этом приобретает радужную окраску.

Явление интерференции в тонких пленках используется в оптических устройствах, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличивающих (вследствие закона сохранения энергии), следовательно, энергию, поступающую к регистрирующим системам - фотопластинке, глазу.

Просветление оптики. Явление интерференции света находит широкое применение в современной технике. Одним из таких применений является «просветление» оптики. В современных оптических системах используются многолинзовые объективы с большим числом отражающих поверхностей. Потери света при отражении могут достигать 25 % в объективе фотоаппарата и 50 % в микроскопе. Кроме того, многократные отражения ухудшают качество изображения, например, возникает фон, уменьшающий его контрастность.

Для уменьшения интенсивности отраженного света объектив покрывают прозрачной пленкой, толщина которой равна 1 / 4 длины волны света в ней:

где λ П - длина световой волны в пленке; λ - длина световой волны в вакууме; n - показатель преломления вещества пленки.

Обычно ориентируются на длину волны, соответствующую середине спектра используемого света. Материал пленки подбирают так, чтобы его показатель преломления был меньше, чем у стекла объектива. В этом случае для вычисления разности хода используется формула (20.11).

Основная доля света падает на объектив под малыми углами. Поэтому можно положить sin 2 α ≈ 0. Тогда формула (20.11) принимает следующий вид:

Таким образом, лучи, отраженные от передней и задней поверхностей пленки, находятся в противофазе и при интерференции почти полностью гасят друг друга. Это имеет место в средней части спектра. Для других длин волн интенсивность отраженного пучка также уменьшается, хотя и в меньшей степени.

20.6. Основные понятия и формулы

Окончание таблицы

20.7. Задачи

1. Какова пространственная протяженность L цуга волн, образующегося за время t высвечивания атома?

Решение

L = c*t = 3х10 8 м/сх10 -8 с = 3 м. Ответ: 3 м.

2. Разность хода волн от двух когерентных источников света равна 0,2 λ. Найти: а) чему равна при этом разность фаз, б) каков результат интерференции.

3. Разность хода волн от двух когерентных источников света в некоторой точке экрана равна δ = 4,36 мкм. Каков результат интерференции, если длина волны λ равна: а) 670; б) 438; в) 536 нм?

Ответ: а) минимум; б) максимум; в) промежуточная точка между максимумом и минимумом.

4. На мыльную пленку (n = 1,36) падает белый свет под углом 45°. При какой наименьшей толщине пленки h она приобретет желтоватый оттенок = 600 нм) при рассматривании ее в отраженном свете?

5. Мыльная пленка толщиной h = 0,3 мкм освещается белым светом, падающим перпендикулярно ее поверхности (α = 0). Пленка рассматривается в отраженном свете. Показатель преломления мыльного раствора равен n = 1,33. Какого цвета будет при этом пленка?

6. Интерферометр освещается монохроматическим светом с λ = 589 нм. Длина кювет l = 10 см. Когда воздух в одной кювете заменили на аммиак, ахроматический максимум сместился на k = 17 полос. Показатель преломления воздуха n 1 = 1,000277. Определить показатель преломления аммиака n 1 .

n 2 = n 1 + kλ/l = 1,000277 + 17*589*10 -7 /10 = 1,000377.

Ответ: n 1 = 1,000377.

7. Для просветления оптики применяют тонкие пленки. Какой толщины должна быть пленка, чтобы пропускать без отражения свет длины волны λ = 550 нм? Показатель преломления пленки n = 1,22.

Ответ: h = λ/4n = 113 нм.

8. Как по внешнему виду отличить просветленную оптику? Ответ: Так как нельзя одновременно погасить свет всех длин

волн, то добиваются гашения света, соответствующего середине спектра. Оптика приобретает фиолетовую окраску.

9. Какую роль выполняет покрытие с оптической толщиной λ/4, нанесенной на стекло, если показатель преломления вещества покрытия больше показателя преломления стекла?

Решение

В этом случае происходит потеря полуволны только на границе пленка-воздух. Поэтому разность хода получается равной λ вместо λ/2. При этом отраженные волны усиливают, а не гасят друг друга.

Ответ: покрытие является отражающим.

10. Лучи света, падающие на тонкую прозрачную пластинку под углом α = 45°, окрашивают ее при отражении в зеленый цвет. Как будет меняться цвет пластинки при изменении угла падения лучей?

При α = 45° условия интерференции соответствуют максимуму для зеленых лучей. При увеличении угла левая часть уменьшается. Следовательно, должна уменьшаться и правая часть, что соответствует увеличению λ.

При уменьшении угла λ будет уменьшаться.

Ответ: при увеличении угла окраска пластинки будет постепенно меняться в сторону красного цвета. При уменьшении угла окраска пластинки будет постепенно меняться в сторону фиолетового цвета.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»