Круг разделенный на 2 части. Деление окружности на любое число равных частей

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи — деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений.

Деление окружности на равные части с помощью циркуля

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7, 8, 12 равных участков.

Деление окружности на четыре равные части.

Штрихпунктирные центровые линии, проведенные перпендикулярно одна другой, делят окружность на четыре равные части. Последовательно соединив их концы, получим правильный четырехугольник (рис. 1).

Рис.1 Деление окружности на 4 равные части.

Деление окружности на восемь равных частей.

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 2).

Рис.2. Деление окружности на 8 равных частей.

Деление окружности на шестнадцать равных частей.

Разделив циркулем дугу, равную 1/8, на две равные части, нанесём засечки на окружность. Соединив все засечки, отрезками прямых, получим правильный шестнадцатиугольник.

Рис.3. Деление окружности на 16 равных частей.

Деление окружности на три равные части.

Чтобы разделить окружность радиуса R на 3 равные части, из точки пересечения центровой линии с окружностью (например, из точки А) описывают как из центра дополнительную дугу радиусом R. Получают точки 2 и 3. Точки 1, 2, 3 делят окружность на три равные части.

Рис. 4. Деление окружности на 3 равные части.

Деление окружности на шесть равных частей. Сторона правильного шестиугольника, вписанного в окружность, равна радиусу окружности (рис. 5.).

Для деления окружности на шесть равных частей надо из точек 1 и 4 пересечения центровой линии с окружностью сделать на окружности по две засечки радиусом R , равным радиусу окружности. Соединив полученные точки отрезками прямых, получим правильный шестиугольник.

Рис. 5. Деление окружности на 6 равных частей

Деление окружности на двенадцать равных частей.

Чтобы разделить окружность на двенадцать равных частей, надо окружность поделить на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А , В , С , D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 и точки А , В , С , D разделяют окружность на двенадцать равных частей (рис. 6).

Рис. 6. Деление окружности на 12 равных частей

Деление окружности на пять равных частей

Из точки А проведем дугу тем же радиусом, что и радиус окружности до пересечения с окружностью - получим точку В . Опустив перпендикуляр с этой точки - получим точку С .Из точки С - середины радиуса окружности, как из центра, дугой радиуса СD сделаем засечку на диаметре, получим точку Е . Отрезок равен длине стороны вписанного правильного пятиугольника. Сделав радиусом засечки на окружности, получим точки деления окружности на пять равных частей.


Рис. 7. Деление окружности на 5 равных частей

Деление окружности на десять равных частей

Разделив окружность на пять равных частей, легко можно разделить окружность и на 10 равных частей. Проведя прямые от получившихся точек через центр окружности до противоположных сторон окружности - получим ещё 5 точек.

Рис. 8. Деление окружности на 10 равных частей

Деление окружности на семь равных частей

Чтобы разделить окружность радиуса R на 7 равных частей, из точки пересечения центровой линии с окружностью (например, из точки А ) описывают как из центра дополнительную дугу этим же радиусом R - получают точку В . Опустив перпендикуляр с точки В - получим точку С .Отрезок ВС равен длине стороны вписанного правильного семиугольника.

Рис. 9. Деление окружности на 7 равных частей

И построение правильных вписанных многоугольников

Деление окружности на 3, 6 и 12 равных частей. Построение правильного вписанного треугольника, шестиугольника и двенадцатиугольника.

Для построения правильного вписанного треугольника надо из точки А пересечения центровой линии с окружностью отложить раз­мер, равный радиусу R, в одну и другую сторону. Получим вершины 1 и 2(рис. 26, а ). Вершина 3 лежит на противоположном точке А конце диаметра.

1/3 1/6 1/12

а) б) в)

Рис. 26

Сторона шестиугольника равна радиусу окружности. Деление на 6 частей показано на рис. 26, б.

Для того чтобы разделить окружность на 12 частей, надо раз­мер, равный радиусу, отложить на окружности в одну и другую сто­рону из четырех центров (рис. 26, в).

Деление окружности на 4 и 8

вписанного четырехугольника и восьмиугольника.

Рис. 27

На 4 части окружность делится двумя взаимно перпендикулярными центровыми линиями. Для деления на 8 частей надо дугу, равную четверти окружности, разделить пополам (рис.27.)

Деление окружности на 5 и 10 равных частей. Построение правильного

вписанного пятиугольника и десятиугольника.


а) б)

Рис. 28

Половину любого диаметра (радиус) делят пополам (рис. 28, а ), получают точку N. Из точки N, как из центра, проводят дугу радиу­сом R 1 , равным расстоянию от точки N до точки А , до пересечения со второй половиной этого диаметра, в точке Р. Отрезок АР равен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности радиусом R 2 , равным отрезку АР, делят окруж­ность на пять равных частей. Начальную точку выбирают в зависимости от расположения пятиугольника. ( ! Нельзя выполнять засечки в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной.)

Деление окружности на 10 равных частей выполняют аналогично делению окружности на пять равных частей (рис. 28, б ), но сначала делят окружность на пять частей, начиная построение из точки А, а затем из точки В, находящейся на противоположном конце диаметра. Можно использовать для построения отрезок ОР – длина которого равна хорде 1/10 длины окружности.

Деление окружности на 7 равных частей.

1/7


а) б) в)

Рис. 29

Из любой точки (например, А ) окружности, радиусом заданной окружности рповодят дугу до пересечения с окружностью в точках В и D (рис. 29,а). Соединив точки В и D прямой, получают отрезок ВС, равный хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Засечки выполняют в последовательности, указанной на рис. 29 б .

Сопряжения

Часто в конструкции деталей одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе. Сопряжение – это плавный переход от одной линии к другой. Построение сопряжений сводится к трем моментам: 1)определение центра сопряжения; 2)нахождение точек сопряжения; 3)построение дуги сопряжения заданного радиуса. Для построения сопряжения чаще всего задан радиус сопряжения. Центр и точка сопряжения определяются графически.

Во время ремонта часто приходится иметь дело с окружностями, особенно если хочется создать интересные и оригинальные элементы декора. Также часто приходится делить их на равные части. Чтобы сделать это есть несколько методов. Например, можно нарисовать правильный многоугольник или использовать известные всем еще со школы инструменты. Так, для того чтобы разделить окружность на равные части понадобятся сама окружность с четко определенным центром, карандаш, транспортир, а также линейка и циркуль.

Деление окружности при помощи транспортира

Разделение окружности на равные части при помощи вышеупомянутого инструмента является, пожалуй, самым простым. Известно, что окружность – это 360 градусов. Разделив это значение на нужное количество частей можно узнать, сколько будет занимать каждая часть (см. фото).

Далее, начиная с любой точки, можно сделать пометки, соответствующие проведенным расчетам. Этот метод хорош, когда окружность нужно разделить на 5, 7, 9 и т.д. частей. Например, если фигуру необходимо разделить на 9 частей, отметки будут находиться на 0, 40, 80, 120, 160, 200, 240, 280 и 320 градусах.

Деление на 3 и 6 частей

Чтобы правильно разделить окружность на 6 частей можно использовать свойство правильного шестиугольника, т.е. его самая длинная диагональ должна составлять две длины его стороны. Для начала циркуль необходимо растянуть на длину равную радиусу фигуры. Далее оставляя одну из ножек инструмента в любой точке окружности, второй необходимо сделать засечку, после чего повторяя манипуляции, получится сделать шесть точек, соединив которые можно получить шестиугольник (см. фото).

Соединив вершины фигуры через одну, можно получить правильный треугольник, а соответственно фигуру можно поделить на 3 равные части, а соединив все вершины и проведя через них диагонали можно разделить фигуру на 6 частей.

Деление на 4 и 8 частей

Если окружность необходимо поделить на 4 равные части, прежде всего, необходимо начертить диаметр фигуры. Это позволит получить сразу две из нужных четырех точек. Далее нужно взять циркуль, растянуть его ножки по диаметру, после чего одну из них оставить на одном из концов диаметра, а другой сделать засечки за пределами круга снизу и сверху (см. фото).

То же необходимо сделать и для другого конца диаметра. После этого полученные за пределами круга точки соединяются при помощи линейки и карандаша. Полученная линия будет вторым диаметром, который будет идти четко перпендикулярно первому, в результате чего фигура будет поделена на 4 части. Для того чтобы получить, например, 8 равных частей, полученные прямые углы можно разделить пополам и провести через них диагонали.

Деление окружности на шесть равных частей и построение пра­вильного вписанного шестиугольника выполняют с помощью угольника с углами 30, 60 и 90 º и/или циркуля. При делении окружности на шесть равных частей циркулем из двух концов одного диаметра радиусом, равным радиусу данной окружности, проводят дуги до пересечения с окружностью в точках 2, 6 и 3, 5 (рис. 2.24). Последовательно соединив полученные точки, получают правильный вписанный шестиугольник.

Рисунок 2.24

При делении окружности циркулем из четырех концов двух взаимно перпендикулярных диаметров окружности проводят радиусом, равным радиусу данной окружности, дуги до пересечения с окружностью (рис. 2.25). Соединив полученные точки, получают двенадцатиугольник.

Рисунок 2.25

2.2.5 Деление окружности на пять и десять равных частей
и построение правильного вписанного пятиугольника и десятиугольника

Деление окружности на пять и десять равных частей и построение правильного вписанного пятиугольника и десятиугольника показано на рис. 2.26.

Рисунок 2.26

Половину любого диаметра (радиус) делят пополам (рис. 2.26 а), получают точку А.Из точки А,как из центра, проводят дугу радиусом, равным расстоянию от точки Адо точки 1 до пересечения со второй половиной этого диаметра, в точке В(рис. 2.26 б). Отрезок 1Вравен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности (рис. 2.26, в) радиусом К ,равным отрезку 1В,делят окруж­ность на пять равных частей. Начальную точку 1 выбирают в зависимости от расположения пятиугольника. Из точки 1 строят точки 2 и 5 (рис. 2.26, в), затем из точки 2 строят точку 3, а из точки 5 строят точку 4. Расстояние от точки 3 до точки 4 проверяют циркулем. Если расстояние между точками 3 и 4 равно отрезку 1В, то построения были выполнены точно. Нельзя выполнять засечки последовательно, в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной. Последовательно соединив найденные точки, получают пятиугольник (рис. 2.26, г).

Деление окружности на десять равных частей выполняют аналогично делению окружности на пять равных частей (рис. 2.26), но сначала делят окружность на пять частей, начиная построение из точки 1, а затем из точки 6, находящейся на противоположном конце диаметра (рис. 2.27, а). Соединив последовательно все точки, получают правильный вписанный десятиугольник(рис. 2.27, б).

Рисунок 2.27

2.2.6 Деление окружности на семь и четырнадцать равных
частей и построение правильного вписанного семиугольника и
четырнадцатиугольника


Деление окружности на семь и четырнадцать равных частей и по­строение правильного вписанного семиугольника и четырнадцатиугольника показано на рис. 2.28 и 2.29.

Из любой точки окружности, например точки А, радиусом заданной окружности проводят дугу (рис. 2.28, а) до пересечения с окружностью в точках В и D. Соединим точки Ви Dпрямой. Половина полученного отрезка (в данном случае отрезок ВС) будет равна хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Радиусом, равным отрезку ВС,делают засечки на окружности в последовательности, показанной на рис. 2.28, б. Соединив последовательно все точки, получают правильный вписанный семиугольник (рис. 2.28, в).

Деление окружности на четырнадцать равных частей выполняется делением окружности на семь равных частей два раза от двух точек (рис. 2.29, а).

Рисунок 2.28

Сначала окружность делится на семь равных частей от точки 1, затем то же построение выполняется от точки 8. Построенные точки соединяют последовательно прямыми линиями и получают правильный вписанный четырнадцатиугольник (рис. 2.29, б).

Рисунок 2.29

Построение эллипса

Изображение окружности в прямоугольной изометрической проекции во всех трех плоскостях проекций представляет собой одинаковые по форме эллипсы.

Направление малой оси эллипса совпадает с направлением аксонометрической оси, перпендикулярной той плоскости проекций, в которой лежит изображаемая окружность.

При построении эллипса, изображающего окружность небольшого диаметра, достаточно построить восемь точек, принадлежащих эллипсу (рис. 2.30). Четыре из них являются концами осей эллипса (A, B, С, D),а четыре других (N 1 , N 2, N 3, N 4) расположены на прямых, параллельных аксонометрическим осям, на расстоянии, равном радиусу изображаемой окружности от центра эллипса.

С помощью циркуля и линейки можно разделить окружность не на любое число частей. Математики доказали, что на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17,…, 257,…частей разделить можно, на 7, 9, 11, 13, 14, … частей нельзя.

К сожалению, нет единого способа деления. Приведем самые главные.

1) Деление окружности на 6, 3, 12, 24, …, 3×2 k (k=0,1,2,3,…) равных частей.

Начинаем с деления окружности на 6 частей . Для этого тем же раствором циркуля, которым проводилась окружность, из любой точки окружности, как из центра, надо провести окружность. Затем повторить процедуру, взяв в качестве центра точку пересечения начальной и новой окружностей.

Чтобы поделить окружность на 3 части, надо поделить ее на 6 частей и взять точки через одну (рис. 5а). Чтобы поделить окружность на 12 частей, надо поделить ее на 6 частей и каждую дугу поделить пополам, далее процесс деления дуг пополам можно продолжать неограниченно.

Длина перпендикуляра, опущенного из центра окружности на сторону шестиугольника, является неплохим приближением для длины стороны семиугольника, вписанного в окружность (на рисунке 5а показан штриховкой). Длина перпендикуляра ≈0,866R, длина стороны семиугольника ≈0,868R – точность ≈2%.

2) Деление окружности на 2, 4, 8, 16,…, 2 k (k=1,2,3,…) равные части.

Разделить окружность на 2 части с помощью линейки можно, проведя прямую через центр окружности. Но можно от любой точки окружности 3 раза отложить радиус круга. Начальная и конечная точки делят окружность пополам (через них можно провести диаметр - рис. 5а). Чтобы поделить окружность на 4 части, надо поделить пополам полученные дуги. Последовательное выполнение деления полученных дуг пополам обеспечивает деление окружности на 8, 16 и т.д. частей.

3) Деление окружности на 5 частей.

Принятый в черчении способ построения использует соотношение между стороной правильного десятиугольника (а 10 )и правильного пятиугольника (а 5 )- a 5 2 =R 2 +a 10 2 . Выполняется построение следующим образом. Проведем 2 перпендикулярные прямые через центр окружности О. А и В – точки их пересечения с окружностью. Из точки А, как из центра, проведем окружность того же радиуса (найдем середину отрезка АО – точку С). Из середины отрезка АО точки С проведем еще одну окружность радиуса СВ. Отрезок ВЕ – равен стороне пятиугольника, ОЕ – десятиугольника (рис. 5б).

Можно делить окружность на 5 и 10 частей способом, изображенным на рисунке 5в. Отрезок ВС - сторона пятиугольника, АС - десятиугольника. О замечательных свойствах пятиугольника и десятиугольника и о том, почему верен способ построения, приведенный на рисунке 5в, мы расскажем в следующей главе.




МедресеКукельдаш (XVIв., Ташкент)

Рисунок 5г демонстрирует прием приближенного геомет-рического решения задачи о делении окружности на любое число частей. Пусть, например, требуется разделить данную окружность на 7 равных частей. Построим на диаметре окружности АВ равносторонний треугольник АВС и разделим диаметр АВ точкой D в отношении AD:AB=2:7 (в общем случае 2:n). Для этого надо провести вспомогательную прямую, на ней отложить n+2 одинаковых отрезка, крайнюю точку соединить с точкой В и через вторую точку провести прямую, параллельную прямой BF. Проведем прямую DC до пересечения с окружностью. Дуга АЕ будет составлять 7-ую часть окружности (в общем случае n-ю). Этот метод при n<11 дает погрешность не более 1%.

Алгоритмы деления окружности на равные части можно использовать, например, для построения опорных точек спиралей - спирали Архимеда, названной так в честь великого древнегреческого ученого Архимеда (III в. до н.э.), впервые изучившего эту линию, и логарифмической спирали.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»