Что нужно для работы индуктивного датчика. Электронные датчики. Функции и принцип действия

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

[ Скрыть ]

Характеристика индуктивных преобразователей

Индуктивный датчик или представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Видео «Как подключить индукционный регулятор?»

Наглядная инструкция на примере подключения регулятора в мотоцикле Юпитер приведена в ролике ниже (автор — Вадим Карамов).

При работе с различными технологиями при желании автоматизировать ряд действий обращаются к различным датчикам. В изделиях из металлов важную роль играет индуктивный датчик. Что он собой представляет и зачем необходим?

Что такое индуктивный датчик?

Что это и где он нашел применение? Индуктивный датчик — это бесконтактный прибор, который используется, чтобы контролировать положение объектов, сделанных из металлов. К другим материалам он чувствительности не проявляет. Применяются бесконтактные индуктивные датчики, чтобы решать задачи АСУТП. Могут быть использованы с нормально замкнутым или разомкнутым контактом. Принцип действия базируется на редактировании параметров магнитного поля, которое создаётся катушкой индуктивности, что внутри датчика. Но все тонкости настолько многочисленны, что необходимо их обсудить отдельно.

Принцип действия

Всё базируется на изменении амплитуды колебаний используемого в индуктивном датчике генератора, когда в активную зону вносится предмет определённого размера из металлического, магнитного и ферро-магнитного материала. Так что использование может быть реализовано только с этими типами. Когда подаётся питание на конечный выключатель, расположенный в его области чувствительности, то образуется магнитное поле. Оно наводит в материале вихревые токи, влияние которых меняет амплитуду колебаний генератора. В конечном результате таких преобразований получается аналоговый выходной сигнал. Его величина меняется и зависит от расстояния между контролируемым предметом и датчиком. Триггер Шмитта превращает аналоговый сигнал в логический. Индуктивный датчик перемещения играет важную роль для механизмов, которые отслеживают изменение местоположения металлических деталей. Встретить подобные устройства вы можете в автомобильных конвейерах. Индуктивный датчик положения поможет определить, расположен ли предмет так, как должен. Если ответ отрицательный, то будут предприняты действия, предусмотренные программой, чтобы всё было так, как необходимо для полноценной и правильной работы конвейера.

Построение индуктивного датчика

Из чего состоит данный механизм? Бесконтактные индуктивные датчики имеют такие основные узлы:

  1. Генератор. Создаёт электромагнитное поле, которое необходимо для взаимодействия с объектом.
  2. Триггер Шмитта. Он обеспечивает гистерезис, когда происходит переключение.
  3. Усилитель. Занимается увеличением амплитуды сигнала, чтобы он достиг необходимого значения.
  4. Светодиодный индикатор. Информирует о состоянии выключателя. Также с его помощью обеспечивается контроль работоспособности и указывает на оперативность настройки.
  5. Компаунд. Необходим для защиты от попадания вовнутрь воды и твердых частиц.
  6. Корпус. С его помощью обеспечивается монтаж датчика и его защита от различных механических воздействий. Изготавливается из полиамида или латуни и комплектуется крепежными изделиями.

Определения

Когда необходимо использовать индуктивный датчик, следует разбираться и в терминологическом минимуме, который нужен для приятной и комфортной работы. Итак, что следует понимать:

  1. Активная зона. Это область перед чувствительной поверхностью индуктивного датчика, где наибольшим образом сконцентрировалось магнитное поле. Диаметр данной площади обычно равен размеру самого прибора.
  2. Номинальное расстояние переключения. Это теоретическая величина расстояния активной зоны, которая не учитывает разброс производственных параметров индуктивного датчика, температурный режим и подаваемое напряжение питания.
  3. Рабочий зазор. Это расстояние, которое гарантирует надежную работу прибора в определённом диапазоне напряжения и температуры.
  4. Поправочный коэффициент. Это показатель, который корректирует значение рабочего зазора, в зависимости от вида металла, из которого был создан объект воздействия.

Достоинства

Почему индуктивные датчики пользуются значительной популярностью? Этому способствует целый ряд параметров, которыми они обладают:

  1. Прочность и простота конструкции, а также отсутствие скользящих контактов.
  2. Индуктивный датчик может быть подключен к источникам промышленной частоты.
  3. Имеют довольно большую выходную мощность, которая может составлять десятки Ватт.
  4. Обладают значительной чувствительностью.

Погрешности

Но при всех плюсах индуктивные датчики имеют и минусы. Самый главный из них - это погрешность. Выделяют такие недостатки:

  1. Погрешность, которая зависит от нелинейной характеристики. В приборе используется принцип индуктивного преобразования величины, что базируется на работе датчиков, которые имеют свой диапазон, из-за чего и возникает данная проблема.
  2. Температурная погрешность. Является случайной составляющей. Поскольку работа прибора зависит от температуры используемых датчиков, то погрешность может достигать значительных значений. Поэтому высокую важность имеет среда работы механизма. Работа индуктивного датчика обычно осуществляется при показателе в 25 градусов в хорошо вентилируемом помещении. Значительное изменение температуры в большее или меньшее значение является нежелательным.
  3. Погрешность из-за влияния других электромагнитных полей. Является случайной составляющей. Возникает из-за того, что на индуктивный датчик действуют внешние электромагнитные поля, которые могут сильно влиять на работу прибора. Чтобы избежать таких случаев, в промышленности электроустановки почти всегда используют частоту в 50 Гц.

Для минимизации вероятности возникновения погрешности необходимо качественно прорабатывать все нюансы.

что такое Датчик индуктивный? Индуктивные датчики широко используются для измерения положения и скорости, особенно в неблагоприятных условиях эксплуатации.Однако терминология и методы работы индуктивных датчиков могут вводить многих инженеров в заблуждение. В этой статье Марк Ховард из компании Zettlex объясняет принципы работы и описывает типы существующих датчиков, а также перечисляет их преимущества и недостатки.

Индуктивные датчики положения и скорости бывают самых разнообразных форм, размеров и конструкций. Можно сказать, что все индуктивные датчики работают по принципу работы трансформатора и физическое явление, основанное на переменных электрических токах. Это явление впервые наблюдал Майкл Фарадей в 1830-х годах, когда обнаружил, что первый токопроводящий проводник может «индуцировать» ток во втором проводнике. Открытия Фарадея позволили создать электродвигатели, динамометры и, конечно же, индуктивные датчики положения и скорости. В число таких датчиков входят простые бесконтактные реле, датчики переменной индуктивности и сопротивления, синхронизаторы, резольверы, ротационные датчики перемещения и линейно-регулируемые дифференциальные трансформаторы (RVDT и LVDT).

Различные типы индуктивных датчиков

В простом бесконтактном датчике (иногда называемом бесконтактным реле) при подключении устройства к источнику электропитания в его катушке (цепи, контуре или обмотке) протекает переменный ток. При приближении к катушке проводящего или магнитопроницаемого материала, например стального диска, импеданс катушки изменяется. Превышение порогового значения служит сигналом о наличии объекта. Бесконтактные датчики обычно используются для определения наличия металла, а их выходной сигнал часто используется для управления переключателем. Эти датчики широко используются во многих областях промышленности, где проблематично использовать электрические контакты обычных переключателей, например там, где много грязи или воды. Даже в обычной автомойке используется множество индуктивных бесконтактных датчиков.

Индуктивные датчики переменной индуктивности и сопротивления обычно генерируют электрический сигнал, пропорциональный смещению проводящего или магнитопроницаемого объекта (обычно стального стержня) относительно катушки. Как и в случае с бесконтактными датчиками, импеданс катушки изменяется пропорционально смещению объекта относительно катушки, в которой протекает переменный ток. Такие устройства обычно используются для измерения смещения поршней в цилиндрах, например в пневматических или гидравлических системах. Можно сделать так, чтобы поршень проходил по внешнему диаметру катушки.

Сельсины измеряют индуктивную связь между катушками, когда те движутся относительно друг друга. Сельсины, которые обычно вращаются, необходимо напрямую подключать как к движущейся, так и к неподвижной деталям (обычно называемым ротором и статором). Они обеспечивают чрезвычайно высокую точность измерений и используются в промышленной метрологии, радиолокационных антеннах и телескопах. Сельсины, как известно, сегодня дорогие и используются все реже, так как на смену им приходят (бесщеточные) резольверы. Последние представляют собой еще один вид индуктивных датчиков, но подключаются только к обмоткам статора.

LVDT, RVDT и резольверы измеряют изменение индуктивной связи между катушками, которые обычно называют первичной и вторичной обмотками. Первичная обмотка передает энергию во вторичные, но количество энергии в каждой из вторичных обмоток изменяется пропорционально относительному смещению магнитопроницаемого материала. В LVDT через отверстие обмоток обычно проходит металлический стержень. Как правило, ротор или полюсная деталь вращаются в RVDT или резольвере относительно обмоток, расположенных вокруг ротора. Обычно LVDT и RVDT используются в гидравлических сервоприводах элеронов аэрокосмических аппаратов, а также элементах управления двигателем и топливной системой. Резольверы, в свою очередь, применяются для коммутации бесщеточных электродвигателей.

Существенным преимуществом индуктивных датчиков является то, что связанные схемы обработки сигналов не нужно располагать в непосредственной близости от чувствительных катушек. Это позволяет размещать чувствительные катушки в неблагоприятных условиях эксплуатации, где другие методы измерения (например, магнитные или оптические) невозможны, поскольку для них относительно чувствительная кремниевая электроника должна находиться в точке измерения.

Применение

Индуктивные датчики известны своей надежностью при работе в сложных условиях. Следовательно, часто именно их сразу выбирают тогда, когда необходимо обеспечить безопасность или высокую надежность работы. Такие требования широко распространены в военной, аэрокосмической, железнодорожной и тяжелой промышленности.

Причина солидной репутации датчиков связана с фундаментальными законами физики и принципами работы, которые, как правило, не зависят от:

  • подвижных электрических контактов;
  • температуры;
  • влажности, воды и наличия конденсата;
  • посторонних предметов, например грязи, жира, твердых частиц и песка.

Преимущества и недостатки

Особенности конструкции основных элементов управления (катушек обмотки и металлических деталей) обеспечивают чрезвычайную надежность большинства индуктивных датчиков. Учитывая их солидную репутацию, возникает очевидный вопрос: «Почему индуктивные датчики не используются чаще?» Причина в том, что их физическая прочность является одновременно их преимуществом и недостатком. Индуктивные датчики отличаются точностью, надежностью и стабильностью, но при этом являются большими, громоздкими и тяжелыми. Большой расход материала и необходимость тщательной намотки катушек обуславливают дороговизну производства датчиков, особенно высокоточных приборов, требующий прецизионной намотки. Помимо простых бесконтактных датчиков, более сложные индуктивные датчики стоят слишком дорого для использования в широко распространенных коммерческих или промышленных сферах применения.

Другая причина их относительно редкого использования заключается в сложности составления инженерами-конструкторами технических условий. Это связано с тем, что схемы генерации переменного тока и обработки сигналов для каждого датчика необходимо рассчитывать и приобретать отдельно. Для этого обычно требуются глубокие навыки и знания в области аналоговой электроники. Поскольку молодые инженеры стремятся сосредоточиться на цифровой электронике, они рассматривают изучение таких дисциплин как приобретение ненужной квалификации, которую следует избегать.

Индуктивные датчики следующего поколения

Тем не менее, в последние годы на рынке появилось новое поколение индуктивных датчиков , которые пользуются все большей популярностью не только в традиционных сферах, но и в промышленном, автомобильном, медицинском, коммунальном, научном и нефтегазовом секторах. В этих индуктивных датчиках нового поколения используются те же фундаментальные законы физики, что и традиционных устройствах, но в них применяются печатные платы и современная цифровая электроника, а не громоздкие трансформаторные конструкции и аналоговая электроника. Такой элегантный подход также позволяет использовать эти технологии в 2D и 3D-датчиках, линейных устройствах с укороченным (< 1 мм) шагом перемещения, устройствах измерения криволинейной геометрии и высокопрецизионных энкодерах угла поворота.

Индуктивные датчики применяются для преобразования в электрический сигнал небольших линейных и угловых перемещений. Простейший индуктивный датчик (называемый однотактным) представляет собой катушку индуктивности 1 с железным сердечником 2 и подвижным якорем З, отделенным от сердечника воздушным зазором (рис. 2-4). Катушка индуктивности с сердечником, называемая статором датчика, закрепляется неподвижно, а якорь соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовывать в электрический сигнал. При перемещении якоря изменяется сопротивление магнитной цепи датчика вследствие изменения воздушного зазора δ между статором и якорем (при вертикальном движении якоря) или площади воздушного зазора S (при горизонтальном движении якоря).

Сопротивление магнитной цепи датчика складывается из сопротивления участка цепи со сталью Rст и сопротивления участка цепи с воздушным зазором Rв. Магнитное сопротивление участка цепи со сталью:

Rст = Lст/(mст/Sст),

где Lст - суммарная длина средней магнитной силовой линии в стали сердечника и якоря; Sст - площадь поперечного сечения стального сердечника; mст - магнитная проницаемость материала сердечника и якоря.

Магнитное сопротивление участка цепи с воздушным зазором:

Rст = 2δ/(μоSв), где δ - длина воздушного зазора между статором и якорем датчика; μо - проницаемость воздуха; Sв - площадь поперечного сечения воздушного зазора. Так как μо>>μо, то Rст 0 . сопротивление магнитной цепи датчика будет определяться в основном сопротивлением участка цепи с воздушным зазором:

Rм ≈ Rв = 2δ/(;μоSr)

Переменный магнитный поток Ф, возникающий при подключении источника питания к катушке датчика, равен

где I - ТОК в цепи катушки датчика; w - число витков катушки датчика,w - число витков катушки датчика.

Индуктивность катушки датчика (если пренебречь потоком рассеяния):

L = ωФ/I = [ω 2 /2δ]μS

Формула (2-1) устанавливает функциональную связь между перемещением якоря индуктивного датчика (при перемещении изменяется или d, или Sв) и индуктивностью катушки датчика.

У индуктивных датчиков с изменяющимся воздушным зазором статическая характеристика L=f(x) нелинейная (рис. 2-5, 1) и при больших зазорах (δ > 1 мм) чувствительность датчика уменьшается. Такие датчики используют при ограниченном диапазоне перемещения якоря - до 1 мм, а начальная рабочая точка выбирается в области характеристики, где она имеет наибольшую крутизну и приближается к линейной чувствительность датчиков с изменяющимся воздушным зазором высокая – до 0,2 мкм.

У индуктивных датчиков с изменяющейся площадью воздушного зазора статическая характеристика L=f(Sв) линейная, диапазон перемещения якоря шире - до 8 мм, но чувствительность меньше - до 0,3 мкм (рис. 2-5, 2). Изменение индуктивности катушки датчика L приводит к изменению ее индуктивного сопротивления: ХL = ωL, где ω - круговая частота питающего напряжения. Следовательно, происходит и изменение полного сопротивления катушки: Z = √Rа*2+XL*2, где Ra - активное сопротивление катушки датчика.

Ток I, протекающий в катушке датчика под действием приложенного переменного напряжения U, также изменяется при перемещении якоря и может служить выходным сигналом датчика (выходной характеристикой). Условно принцип работы индуктивных датчиков можно представить в виде цепи преобразований происходящих при перемещении якоря датчика (для датчиков с изменяющимся воздушным зазором):

x → δ → Rm → Ф↓ → L↓ → Xl↓ → Z↓ → I

Однотактные индуктивные датчики имеют высокую чувствительность и надежность, практически неограниченный срок службы, большую мощность выходного сигнала (до нескольких ватт), что позволяет в ряде случаев не применять усилитель. К недостаткам индуктивных датчиков следует отнести нереверсивность характеристики, небольшой диапазон перемещений якоря, наличие тока холостого хода и электромагнитной силы притяжения между якорем и статором, влияние колебаний амплитуды и частоты напряжения питания. Эти недостатки полностью или частично отсутствуют у дифференциальных индуктивных датчиков.

Дифференциальный индуктивный датчик

Он содержит два статора с катушками индуктивности L1 и L2 и один общий якорь. При перемещении якоря индуктивность одной катушки увеличивается, другой - уменьшается. Катушки индуктивности включаются или в дифференциальную измерительную схему, или как смежные плечи в мостовую измерительную схему.

Дифференциальные индуктивные датчики по сравнению с однотактными имеют более высокую точность преобразования и чувствительность. Статическая характеристика этих датчиков линейная и реверсивная.

Трансформаторные датчики

Они являются разновидностью индуктивных датчиков. Трансформаторный датчик можно рассматривать как трансформатор, у которого коэффициент трансформации изменяется за счет изменения коэффициента взаимоиндуктивности М между его обмотками. Такие датчики применяются для преобразования в электрический сигнал (напряжение переменного тока) небольших линейных и угловых перемещений.

На рис. 2-6 представлен дифференциальный трансформаторный датчик с угловым перемещением якоря. Первичная обмотка датчика ω1 расположена на центральном стержне сердечника 1 и подключена к источнику переменного тока. Вторичные обмотки ω2а и ω2б расположены на крайних стержнях и соединяются последовательно и встречно. Ток, протекающий по ω1 создает переменный магнитный поток Ф1, разветвляющийся на два потока: Ф1а и Ф1б. При симметричном положении якоря 2 по отношению к статору датчика (сердечник 1 с обмотками ω1, ω2а и ω2б) магнитные потоки равны: Ф1а=Ф1б=Ф1/2, и ЭДС, индуцирующиеся во вторичных обмотках, будут также равны: Е2а=Е2б.



Так как фазы этих ЭДС противоположны (за счет встречного включения обмоток ω2а и ω2б), то напряжение на выходе датчика будет равно нулю: Uвых = Е2а - Е2б=О. При повороте якоря, который механически связан с подвижной частью объекта управления, изменяются площади поперечного сечения воздушных зазоров и между якорем и крайними стержнями сердечника. В результате этого изменятся сопротивления RM1 и RM2 магнитных цепей потоков Ф1а и Ф1б, да и сами потоки: один из них увеличивается на ΔФ, а другой уменьшится на ΔФ. Индуцирующие во вторичных обмотках ЭДС Е2а и Е2б также изменятся пропорционально изменению потоков ФIа и Ф2б. На выходе датчика появится напряжение Uвых, амплитуда которого равна разности амплитуд ЭДС Е2а и Е2б: Uвых = Е2а-Е2б, а фаза выходного напряжения будет определяться фазой большей из ЭДС.

Таким образом, характеристика такого датчика будет реверсивной и линейной (в рабочей зоне). Чувствительность дифференциального трансформаторного датчика в два раза выше, чем у однотактного, рабочая зона в два раза больше, и при симметричном положении якоря выходное напряжение равно нулю. Точность преобразования у дифференциальных трансформаторных датчиков выше, так как ввиду симметричности конструкции и схемы датчика частично взаимно компенсируются погрешности от изменения окружающей температуры и частоты источника питания.

PS. Платиновый провод при эксплуатации неизбежно загрязняется. Чтобы предотвратить такое загрязнение после того, как двигатель будет выключен, провод на одну секунду накаляется до температуры 1000 С. Вся пыль, которая на него налипла, моментально сгорает.

Терморезисторы изготовляют как из чистых металлов (платина, несколько хуже - медь и никель), так и из полупроводников.

По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивных датчиков состоит в преобразовании линейного перемещения в изменение индуктивности катушки датчика.

Устройство и принцип работы индуктивных датчиков

Индуктивный датчик функционирует следующим образом (на примере датчика частоты вращения):

Принцип действия. В основе работы индуктивных датчиков частоты вращения лежит явление электромагнитной индукции. Датчики выполнены в виде катушек с магнитными сердечниками. При прохождении под сердечником зубца ферромагнитного диска (например, зубца венца маховика коленчатого вала двигателя) магнитный проток датчика изменяется, и в катушке датчика индуцируется электродвижущая сила. Амплитуда импульсов зависит от частоты вращения коленчатого вала и зазора между сердечником и зубцом маховика

Индуктивные преобразователи имеют множество различных конструкций:

а) индуктивный преобразователь переменной длиной воздушного зазора δ.

Характеризуется нелинейной зависимостью L = f(δ).

Такие преобразователи обычно применяют при перемещениях якоря на 0,01 - 5 мм.

б) индуктивный преобразователь с переменным сечением воздушного зазора. Имеет значительно меньшую чувствительностью, но линейную зависимость L = f(δ).

Эти преобразователи используют при перемещениях до 10 - 15 мм.

в) индуктивные преобразователи дифференциальные преобразователи, в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов.

Имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов.

Области применения индуктивных датчиков.

1. Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм.

2. Для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.


Достоинства индуктивных датчиков:

Простота и прочность конструкции, отсутствие скользящих контактов;

Возможность подключения к источникам промышленной частоты;

Относительно большая выходная мощность (до десятков Ватт);

Значительная чувствительность.

Недостатки индуктивных датчиков:

Точность работы зависит от стабильности питающего напряжения по частоте;

Возможна работа только на переменном токе.

Примеры применения индуктивных датчиков:

1. Датчик положения коленчатого вала:

Датчик положения коленчатого вала установлен на кронштейне около шкива привода генератора (см. Фото-2).

Для генерации импульса синхронизации оборотов коленвала на шкиве отсутствуют два зуба (см.Фото-2 и Рис. 1).

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»