Обработка конусных наружных и внутренних поверхностей. Обработка конических поверхностей на токарном станке. Растачивание и развертывание конических отверстий

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Обработка деталей с конической поверхностью связана с образованием конуса, который характеризуется следующими размерами - рисунок слева а): меньшим d и большим D диаметрами и расстоянием L между плоскостями, в которых расположены окружности с диаметрами D и d. Угол α называется углом наклона конуса, а угол 2α - углом конуса. Отношение K=(D-d)/L называется конусностью и обычно обозначается со знаком деления (например, 1: 20 или 1: 50), а в некоторых случаях десятичной дробью (например, 0,05 или 0,02). Отношение y=(D-d)/(2L)=tg α называется уклоном.

Способы обработки конических поверхностей

При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, имеющие коническую форму. Если длина конуса не превышает 50 мм, то его обработку можно производить широким резцом - рисунок слева б). Угол наклона режущей кромки резца в плане должен соответствовать углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Для уменьшения искажения образующей конической поверхности и уменьшения отклонения угла наклона конуса необходимо устанавливать режущую кромку резца по оси вращения обрабатываемой детали. Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса, ближе расположен конус к середине детали, больше вылет резца и меньше прочность его закрепления. В результате вибраций на обрабатываемой поверхности появляются следы и ухудшается ее качество. При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит от режима обработки и направления подачи.

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем - рисунок слева в), на угол α, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой перемещения верхних салазок), что является недостатком этого метода, поскольку неравномерность ручной подачи приводит к увеличению шероховатости обработанной поверхности. Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Конические поверхности большой длины с α=8-10 градусов можно обрабатывать при смещении задней бабки - рисунок слева г), величина которого h=L×sin α. Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Способы контроля величины смещения задней бабки показаны на рисунке справа. В резцедержателе закрепляют упор, рисунок а) или индикатор, рисунок б). В качестве упора может быть использована тыльная сторона резца. Упор или индикатор подводят к пиноли задней бабки, фиксируют их исходное положение по лимбу рукоятки поперечной подачи или по стрелке индикатора, а затем отводят. Заднюю бабку смещают на величину больше h, a упор или индикатор передвигают (рукояткой поперечной подачи) на величину h от исходного положения. Затем заднюю бабку смещают в сторону упора или индикатора, проверяя ее положение по стрелке индикатора или по тому, насколько плотно зажата полоска бумаги между упором и пинолью. Положение задней бабки для обработки конической поверхности можно определить по готовой детали. Готовую деталь (или образец) устанавливают в центрах станка и заднюю бабку смещают до тех пор, пока образующая конической поверхности не окажется параллельной направлению продольного перемещения суппорта. Для этого индикатор устанавливают в резцедержатель, подводят к детали до соприкосновения и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонения стрелки индикатора не будут минимальными, после чего закрепляют.

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно последние выполнять со скругленными вершинами.

Распространенной является обработка конических поверхностей с применением копирных устройств. К станине станка крепится плита 1, рисунок слева а), с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Величина поперечного перемещения зависит от угла поворота копирной линейки 2 относительно оси 3 поворота. Угол поворота линейки определяют по делениям на плите 1, фиксируют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта. Обработку конической поверхности 4, рисунок слева б), производят по копиру 3, установленному в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта устанавливают приспособление 1 с копирным роликом 2 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный ролик 2 в соответствии с профилем копира 3 получает продольное перемещение, которое передается (через приспособление 1) резцу. Наружные конические поверхности обрабатываются проходными, а внутренние конические поверхности - расточными резцами.

Для получения конического отверстия в сплошном материале, рисунок справа, заготовку обрабатывают предварительно (сверлят, растачивают), а затем окончательно (развертывают). Развертывание выполняют последовательно комплектом конических разверток - рисунок внизу. Диаметр предварительно просверленного отверстия на 0,5-1 мм меньше заходного диаметра развертки. Формы режущих кромок и работа разверток: режущие кромки черновой развертки - а) имеют форму уступов; получистовая развертка - б) снимает неровности, оставленные черновой разверткой; чистовая развертка - в) имеет сплошные режущие кромки по всей длине и калибрует отверстие. Если требуется коническое отверстие высокой, точности, то его перед развертыванием обрабатывают коническим зенкером, для чего в сплошном материале сверлят отверстие диаметром на 0,5 мм меньше, чем диаметр конуса, а затем применяют зенкер. Для уменьшения припуска под зенкерование иногда применяют ступенчатые сверла разного диаметра.


К атегория:

Токарное дело

Обработка наружных и внутренних конических поверхностей

Если вращать прямоугольный треугольник АБВ вокруг катета АБ, то образующееся тело называют полным конусом, катет АБ - высотой конуса. Прямую АВ называют образующей конуса, а точку А - его вершиной. При вращении катета БВ вокруг оси АБ образуется поверхность, называемая основанием конуса. Угол между образующей АГ и осью АБ - есть угол а уклона конуса. Угол ВАГ между образующими АВ и АГ конуса называют углом конуса; он равен 2а. Если от полного конуса отсечь его верхнюю часть плоскостью, параллельной основанию, то полученное тело будет усеченным конусом (рис. 206,6), который имеет два основания - верхнее и нижнее. Расстояние 001 между основаниями - высота усеченного конуса. На чертеже обычно указывают три основных размера конуса (рис. 206, в): больший диаметр D, меньший диаметр d и высоту конуса.

Рис. 198. Применение сверл для Г обработни отверстий

Рис. 199. Приспособления для крепления сверл

Пользуясь формулой tga = =(D- d)/(2l), можно определить угол а наклона конуса, который на токарном станке устанавливают поворотом верхнего суппорта или смещением задней бабки. Иногда конусность задают так: K = (D - d)/l, т. е. конусность есть отношение разности диаметров к длине. На рис. 206, г показан конус, у которого К = = (100 -90)/100= 1/10, т. е. на длине 10 мм диаметр конуса уменьшается на 1 мм. Конусность и диаметр конуса связаны уравнением d = = D - Kl, откуда D = d + Kl.

Если взять отношение полуразности диаметров конуса к его длине, то получим величину, называемую уклоном конуса M = (D - d)/(2l) (рис. 206, д). Уклон конуса и конусность обычно выражают отношениями 1:10, 1:50 или 0,1:0,05 и т. д. На практике используют формулу

Рис. 200. Сверление глухих и глубоних снвозных отверстий

Рис. 201. Растачивание отверстий

В машиностроении распространены конусы Морзе и метрические конусы. Конус Морзе (рис. 207) имеет семь номеров: 0, 1, 2, 3, 4, 5 и 6. Каждому номеру соответствует определенный угол наклона: наименьший 0, наибольший 6. Углы у всех конусов разные. Метрические конусы имеют конусность 4; 6; 80; 100; 120; 160 и 200; у них угол уклона одинаков (рис. 208).

Обработка конических поверхностей отличается от обработки цилиндрических только углом подачи резца (рис. 209), что достигают настройкой станка. При вращении заготовки вершина резца перемещается под углом а (углом конуса). На токарном станке конусы обрабатывают несколькими способами. Обработка конуса с помощью широкого резца показана на рис. 210, а. При этом высота конуса должна быть не более 20 мм. Кроме того, режущую кромку резца устанавливают под углом а к оси вращения детали точно по высоте центров (рис. 210,6).

Наиболее простым способом для получения конических поверхностей является смещение линии центров. Этот способ применяют только при обработке поверхностей в центрах путем смещения корпуса задней бабки. При смещении корпуса задней бабки на рабочего (в сторону резцедержателя) образуется коническая поверхность, у которой большее основание детали направлено в сторону передней бабки (рис. 211, а). При смещении корпуса задней бабки от рабочего большее основание расположено в сторону задней бабки (рис. 211,6). Поперечное смещение корпуса задней бабки H = L - sina. При небольшом смещении угла наклона конуса а можно считать, что sinaa;tga, тогда H = L(D - d)/(2l). Смещение корпуса задней бабки измеряют линейкой (рис. 211, в), соосность центров также можно проверить линейкой (рис. 211, г). Однако при смещении корпуса задней бабки следует учитывать, что смещение допускается не более чем на 1/50 длины детали (рис. 211, д). При большем смещении образуется неполное прилегание центровых отверстий детали и центров, что снижает точность обрабатываемой поверхности.

Рис. 203. Индикаторный нутромер для измерения глубины отверстий: 1 -центрирующий мостин; 2-измерительный наконечник; 3-двух-ллечий рычаг; 4-регулируемый упор; 5-пружина, устраняющая зазор в передаточных элементах; 6-измерительный стержень индикатора

Рис. 204. Цельные и насадные зеннеры

Рис. 205. Развертни

Конусы с большим углом а и малой высотой целесообразно обрабатывать путем поворота верхнего суппорта. Этот способ используют при обработке наружного (рис. 212, а) и внутреннего (рис. 212,6) конуса. В этом случае ручную подачу осуществляют путем поворота рукоятки верхнего суппорта. Для поворота верхнего суппорта на требуемый угол при механической подаче используют деления, нанесенные на фланце поворотной части суппорта. Если угол а не задан на чертеже, его подсчитывают по формуле tga = (D - d)/(2l). Резец устанавливают строго по центру. Отклонение от прямолинейности образующей обрабатываемого конуса возникает при установке резца выше (рис. 213,6) или ниже (рис. 213,в) линии центра.

Для получения конических поверхностей с а^ 10…12° .применяют копировальную линейку (рис. 214). На плите 1 установлена линейка 2, которую поворачивают под требуемый угол а вокруг пальца 3 и закрепляют винтом 6. Ползун 4 жестко соединен с поперечной частью суппорта 8 с помощью тяги 7 и зажима 5. Копировальная линейка должна быть установлена параллельно образующей конуса, который необходимо получить. Угол поворота копировальной линейки определяют из выражения tga = (Z) - d)/(2l). Если деления на плите обозначены в миллиметрах, то число делений C - H(D - d)/(2l), где Я - расстояние от оси вращения линейки до ее конца.

Конус, у которого длина образующей больше длины хода верхней каретки суппорта, обтачивают путем применения продольной и поперечной подач (рис. 215). При этом верхнюю каретку необходимо повернуть на угол р относительно линии центров: sinp = tga(Snp/S„+ 1), где оПр и S„ - продольная и поперечная подачи. Для получения конусности требуемой формы резец устанавливают строго по центру.

Коническое отверстие обрабатывают в следующей последовательности. Сверлят отверстие несколько меньшего диаметра, чем диаметр меньшего основания конуса (рис. 216), затем рассверливают отверстие сверлом. После этого ступенчатое отверстие растачивают резцом. Другим способом получения конического отверстия является сверление отверстия (рис. 217, а), развертывание черновое (рис. 217,6), получистовое (рис. 217, в), чистовое (рис. 217,г).

Рис. 206. Геометричесние параметры нонуса

Конические поверхности контролируют угломерами (рис. 218, а), калибрами (рис. 218, б, в) и шаблонами (рис. 218, г). Конические отверстия проверяют по уступам и рискам, нанесенным на калибрах (рис. 219). Если конец конусного отверстия детали совпадает с левым торцом уступа, а наружный диаметр совпадает с одной из рисок или же находится между ними, то размеры конуса соответствуют заданным.

Рис. 207. Конус Морзе

Рис. 208. Метричесний нонус

Рис. 209. Схема обработки цилиндрической и нонической поверхностей: а-вершина резца перемещается параллельно оси центров; б-вершина резца перемещается под углом н оси центров


Общие сведения о конусах. Коническая поверхность характеризуется следующими параметрами (рис. 4.31): меньшим d и большим D диаметрами и расстоянием 1 между плоскостями, в которых расположены окружности диаметрами D u d. Угол а называется углом наклона конуса, а угол 2α - углом конуса.

Рис. 4.31. Геометрия конуса:
d и D - меньший и больший диаметры; l - расстояние между плоскостями; α - угол наклона конуса; 2α - угол конуса

Отношение K = (D - d)/l называется конусностью и обычно обозначается со знаком деления (например, 1:20 или 1:50), а в некоторых случаях - десятичной дробью (например, 0,05 или 0,02).

Отношение Y = (D - d)/(2l) = tgα называется уклоном.

Способы обработки конических поверхностей . При обработке валов часто встречаются переходы между поверхностями, имеющие коническую форму. Если длина конуса не превышает 50 мм, то его обработку можно производить врезанием широким резцом. Угол наклона режущей кромки резца в плане должен соответствовать углу наклона конуса на обработанной детали. Резцу сообщают поперечное движение подачи.

Для уменьшения искажения образующей конической поверхности и уменьшения отклонения угла наклона конуса необходимо устанавливать режущую кромку резца по оси вращения обрабатываемой детали.

Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса, чем ближе расположен конус к середине детали, чем больше вылет резца и меньше прочность его закрепления. В результате вибраций на обрабатываемой поверхности появляются следы и ухудшается ее качество. При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол наклона. (Смещение резца зависит от режима обработки и направления движения подачи.)

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем (рис. 4.32) на угол а, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой перемещения верхних салазок), что является недостатком этого метода, поскольку неравномерность ручной подачи приводит к увеличению шероховатости обработанной поверхности. Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Рис. 4.32. Обработка конической поверхности путем поворота верхних салазок суппорта:
2α - угол конуса; α - угол наклона конуса

Коническую поверхность большой длины с углом 8...10° можно обрабатывать при смещении задней бабки (рис. 4.33)

При малых углах sinα ≈ tgα

h = L(D - d)/(2l),

где L - расстояние между центрами; D - больший диаметр; d - меньший диаметр; l - расстояние между плоскостями.

Если L = l, то h = (D - d)/2.

Смещение задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите смещение задней бабки отсчитывают по линейке, приставленной к опорной плите.

Рис. 4.33. Обработка конической поверхности путем смещения задней бабки: d и D - меньший и больший диаметры; l - расстояние межау плоскостями; h - расстояние между центрами; h - смещение заднего центра; α - угол наклона конуса

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно последние выполнять со скругленными вершинами.

Достаточно распространенной является обработка конических поверхностей с применением копирных устройств. К станине станка крепится плита 7 (рис. 4.34, а) с копирной линейкой 6, по которой перемещается ползун 4, соединенный с суппортом 1 станка тягой 2 с помощью зажима 3. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечного движения подачи. При продольном перемещении суппорта 1 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 6. Поперечное перемещение зависит от угла поворота копирной линейки 6 относительно оси 5 поворота. Угол поворота линейки определяют по делениям на плите 7, фиксируя линейку болтами 8. Движение подачи резца на глубину резания производят рукояткой перемещения верхних салазок суппорта. Наружные конические поверхности обрабатывают проходными резцами.

Рис. 4.34. Обработка конической поверхности с применением копирных устройств:
а - при продольном перемещении суппорта: 1 - суппорт; 2 - тяга; 3 - зажим; 4 - ползун; 5 - ось; 6 - копирная линейка; 7 - плита: 8 - болт; б - при поперечном перемещении суппорта: 1 - приспособление; 2 - копир; 3 - копир-ный ролик; 4 - внутренняя коническая поверхность; α - угол поворота копирной линейки

Способы обработки внутренних конических поверхностей . Обработку внутренней конической поверхности 4 заготовки (рис. 4.34, б) производят по копиру 2, установленному в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта устанавливают приспособление 1 с копирным роликом 3 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный ролик 3 в соответствии с профилем копира 2 получает продольное перемещение, которое через приспособление 1 передается резцу. Внутренние конические поверхности обрабатывают расточными резцами.

Для получения конического отверстия в сплошном материале заготовку сначала обрабатывают предварительно (сверлят, растачивают), а затем окончательно (развертывают). Развертывание выполняют последовательно комплектом конических разверток. Диаметр предварительно просверленного отверстия на 0,5...1 мм меньше заходного диаметра развертки.

Если требуется коническое отверстие высокой точности, то его перед развертыванием обрабатывают коническим зенкером, для чего в сплошном материале сверлят отверстие диаметром на 0,5 мм меньше, чем диаметр конуса, а затем применяют зенкер. Для уменьшения припуска под зенкерование иногда применяют ступенчатые сверла разного диаметра.

Обработка центровых отверстий . В деталях типа валов часто выполняют центровые отверстия, которые используют для последующей токарной и шлифовальной обработки детали и для восстановления ее в процессе эксплуатации. На основании этого центровку выполняют особенно тщательно.

Центровые отверстия вала должны находиться на одной оси и иметь одинаковые конусные отверстия на обоих торцах независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий.

Конструкции центровых отверстий приведены на рис. 4.35. Наибольшее распространение имеют центровые отверстия с углом конуса 60°. Иногда в тяжелых валах этот угол увеличивают до 75 или 90°. Для того чтобы вершина центра не упиралась в заготовку, в центровых отверстиях выполняют цилиндрические углубления диаметром d.

Рис. 4.35. Центровые отверстия:
1 - незащищенные от повреждений; б - защищенные от повреждений

Для защиты от повреждений центровые отверстия многократного использования выполняют с предохранительной фаской под углом 120° (рис. 4.35, б).

Для обработки центровых отверстий в небольших заготовках применяют различные методы. Заготовку закрепляют в самоцент-рирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом. Центровые отверстия больших размеров обрабатывают сначала цилиндрическим сверлом (рис. 4.36, а), а затем однозубой (рис. 4.36, б) или многозубой (рис. 4.36, в) зенковкой. Центровые отверстия диаметром 1,5...5 мм обрабатывают комбинированными сверлами без предохранительной фаски (рис. 4.36, г) и с предохранительной фаской (рис. 4.36, д).

Рис. 4.36. Центровые инструменты:
а - цилиндрическое сверло; б - однозубая зенковка; в - многозубая зенковка; г - комбинированное сверло без предохранительной фаски; д - комбинированное сверло с предохранительной фаской

Центровые отверстия обрабатывают при вращающейся заготовке; движение подачи центровочного инструмента осуществляют вручную (от маховика задней бабки). Торец, в котором обрабатывают центровое отверстие, предварительно подрезают резцом.

Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, используя лимб маховика задней бабки или шкалу пиноли. Для обеспечения соосности центровых отверстий деталь предварительно размечают, а длинные детали при зацентровке поддерживают люнетом.

Центровые отверстия размечают с помощью угольника.

После разметки производят накернивание центрового отверстия. Если диаметр шейки вала не превышает 40 мм, то можно производить накернивание центрового отверстия без предварительной разметки с помощью приспособления, показанного на рис. 4.37. Корпус 1 приспособления устанавливают левой рукой на торце вала 3 и ударом молотка по кернеру 2 намечают центр отверстия.

Рис. 4.37. Приспособление для накернивания центровых отверстий без предварительной разметки:
1 - корпус; 2 - кернер; 3 - вал

Если в процессе работы конические поверхности центровых отверстий были повреждены или неравномерно изношены, то допускается их исправление резцом. В этом случае верхнюю каретку суппорта поворачивают на угол конуса.

Контроль конических поверхностей . Конусность наружных поверхностей измеряют шаблоном или универсальным угломером. Для более точных измерений применяют калибры-втулки (рис. 4.38), с помощью которых проверяют не только угол конуса, но и его диаметры. На обработанную поверхность конуса карандашом наносят две-три риски, затем на измеряемый конус надевают калибр-втулку, слегка нажимая на нее и поворачивая ее вдоль оси. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и В.

Рис. 4.38. Калибр-втулка для проверки наружных конусов (а) пример ее применения (б):
А, В - метки

При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяется (как и при измерении наружных конусов) взаимным прилеганием поверхностей детали и калибра-пробки. Если тонкий слой краски, нанесенный на калибр-пробку, сотрется у малого диаметра, то угол конуса в детали велик, а если у большого диаметра - угол мал.

Контрольные вопросы

  1. Что называют конусностью и как она обозначается?
  2. Какие существуют методы обработки наружных конических поверхностей?
  3. Какие существуют методы обработки внутренних конических поверхностей?
  4. Расскажите, как обрабатывают центровые отверстия.
  5. Расскажите, как производят контроль конических поверхностей.

8.1. Способы обработки При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, которые имеют коническую форму. Если длина конуса не превышает 50 мм, то его обрабатывают широким резцом (8.2). При этом режущая кромка резца должна быть установлена в плане относительно оси центров на угол, соответствующий углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Чтобы уменьшить искажение образующей конической поверхности и отклонение угла наклона конуса, режущую кромку резца устанавливают по оси вращения детали.
Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации. Уровень вибраций растет с увеличением длины обрабатываемой детали и с уменьшением ее диаметра, а также с уменьшением угла наклона конуса, с приближением расположения конуса к середине детали и с увеличением вылета резца и при недостаточно прочном его закреплении. При вибрациях появляются следы и ухудшается качество обработанной поверхности. При обработке широким резцом жестких деталей вибрации могут не возникать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что может привести к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит также от режима обработки и направления подачи.
Конические поверхности с большими уклонами можно обрабатывать при повернутых верхних салазках суппорта с резцедержателем (8.3) на угол а, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой верхних салазок), что является недостатком этого способа, так как неравномерность подачи приводит к увеличению шероховатости обработанной поверхности. По этому способу обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.


Конические поверхности большой длины с углом наклона сс = 84-Ю° можно обрабатывать при смещении заднего центра (8.4), величина которого й = = L sin а. При малых углах sin a«tg a, а h = L{D-d)/2l. Если L = /, то /i = (D - -d)/2. Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Контроль величины смещения задней бабки производят с помощью упора (8.5, а) или индикатора (8.5, б). В качестве упора может быть использована тыльная сторона резца. Упор или индикатор подводят к пиноли задней бабки, фиксируют их исходное положение по лимбу рукоятки поперечной подачи или по стрелке индикатора. Заднюю бабку смещают на величину, большую h (см. 8.4), а упор или индикатор передвигают (рукояткой поперечной подачи) на величину h от исходного положения. Затем заднюю бабку смещают в сторону упора или индикатора, проверяя ее положение по стрелке индикатора или по тому, насколько плотно зажата полоска бумаги между упором и пи-нолью. Положение задней бабки можно определить по готовой детали или образцу, которые устанавливают в центрах станка.
Затем индикатор устанавливают в резцедержатель, подводят к детали до соприкосновения у задней бабки и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонение стрелки индикатора не будет минимальным на длине образующей конической поверхности, после чего бабку закрепляют. Одинаковая конусность деталей в партии, обрабатываемых этим способом, обеспечивается при минимальных отклонениях заготовок по длине и центровых отверстий по размеру (глубине). Поскольку смещение центров станка вызывает изнашивание центровых отверстий запотовок, конические поверхности обрабатывают предварительно, а затем, исправив центровые отверстия, производят окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно применять центры со скругленными вершинами.
Конические поверхности с a = 0-j-12° обрабатывают с использованием копирных устройств. К станине станка-крепится плита / (8.6, а) с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Угол поворота линейки относительно оси 3 определяют по делениям на плите /. Закрепляют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта.
Обработку наружных и торцовых конических поверхностей 9 (8.6, б) производят по копиру 10, который устанавливают в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта закрепляют приспособление 11 с копирным роликом 12 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный палец в соответствии с профилем копира 10 получает продольное перемещение на определенную величину, которая передается резцу. Наружные конические поверхности обрабатывают проходными резцами, а внутренние - расточными резцами.
Для получения конического отверстия в сплошном материале (8.7, а-г) заготовку обрабатывают предварительно (сверлят, зенкеруют, растачивают), а затем окончательно (развертывают, растачивают). Развертывание выполняют последовательно комплектом конических разверток (8.8, а-в). Предварительно в заготовке сверлят отверстие диаметром на 0,5- 1,0 мм меньше диаметра направляющего конуса развертки. Затем отверстие обрабатывают последовательно тремя развертками: режущие кромки черновой развертки (первой) имеют форму уступов; вторая, получистовая развертка снимает неровности, оставленные черновой разветкой; третья, чистовая развертка имеет сплошные режущие кромки по всей длине и калибрует отверстие.
Конические отверстия высокой точности предварительно обрабатывают коническим зенкером, а затем конической разверткой. Для уменьшения съема металла зенкером отверстие иногда обрабатывают ступенчато сверлами разного диаметра. 8.2. Обработка центровых отверстий В деталях типа валов часто приходится выполнять центровые отверстия, которые используют для дальнейшей обработки детали и для восстановления ее при эксплуатации.
Центровые отверстия вала должны находиться на одной оси и иметь одинаковые размеры на обоих торцах вала независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий.
Наиболее распространены центровые отверстия с углом конуса 60° (8.9, а; табл. 8.1). Иногда при обработке крупных тяжелых заготовок этот угол увеличивают до 75 или до 90°. Вершина рабочей части центра не должна упираться в заготовку, поэтому центровые отверстия всегда имеют при вершине цилиндрическое углубление малого диаметра d. Для защиты центровых отверстий от повреждений при многократной установке заготовки в центрах предусмотрены центровые отверстия с предохранительной фаской с углом 120° (8.9, б).
На 8.10 показано, как изнашивается задний центр станка при неправильно выполненном центровом отверстии в заготовке. При несоосности а центровых отверстий и несоосности b центров (8.11) заготовка базируется с перекосом, что вызывает значительные погрешности формы наружной поверхности детали.
Центровые отверстия в заготовках обрабатывают различными способами. Заготовку закрепляют в самоцентрирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом.
Центровые отверстия диаметром 1,5- 5 мм обрабатывают комбинированными центровыми сверлами без предохранительной (8.12, г) и с предохранительной фаской (8.12, д). Центровые отверстия других размеров обрабатывают раздельно, сначала цилиндрическим сверлом (8.12, а), а затем однозубой (8.12, б) или многозубой (8.12, е) зенковкой. Центровые отверстия обрабатывают при вращающейся заготовке и ручной подаче центровочного инструмента. Торец заготовки предварительно подрезают резцом. Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, пользуясь лимбом маховика задней бабки или шкалой (упором) пиноли. Для обеспечения соосности центровых отверстий заготовку предварительно размечают, а при зацентровке поддерживают люнетом. Центровые отверстия размечают с помощью разметочного угольника (8.13). Пересечение нескольких рисок определяет положение центрового отверстия на торце вала. После разметки производят накер-нивание центрового отверстия.
Измерение конусности наружных конических поверхностей может выполняться шаблоном или универсальным угломером. Для более точных измерений конусов применяют калибры-втулки. С помощью калибра-втулки проверяют не только угол конуса, но и его диаметры (8.14). На обработанную поверхность конуса наносят 8.14. Калибр-втулка для проверки наружных конусов (а) и пример ее применения (б) 2-3 риски карандашом, затем надевают калибр-втулку на измеряемый конус детали, слегка нажимая вдоль оси и поворачивая ее. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и В калибра-втулки.
При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяют так же, как и при измерении наружных конусов по взаимному прилеганию поверхностей детали и калибра-пробки.

Обработка конических поверхностей – это технически сложный процесс, который выполняется на токарном оборудовании.

Кроме специального инструмента необходима высокая квалификация (разряд) оператора. Обработка конических поверхностей на токарных станках делится на две категории:

  • работа с наружными конусами;

  • работа с коническими отверстиями.

Каждый вид обработки обладает своими техническими особенностями и нюансами, которые должны учитываться токарем.

Особенности обработки наружного конических поверхностей

В силу своей специфической формы, работа с наружными коническими поверхностями обладает своей спецификой.

При несоответствии инструмента, дины фигуры и ее физических характеристик поверхность детали приобретает волнистую форму, что негативно сказывается на качестве заготовки и ее дальнейшей пригодности в эксплуатации.

Причины возникновения волнистости:

  • длина конуса более 15 мм;

  • большой вылет резца или плохое крепление детали;

  • увеличение длины заготовки с пропорциональным уменьшением ее диаметра (толщины).

Обработка конических поверхностей на токарном станке без эффекта волн производится при соблюдении таких условий:

  • не нужно достигать высокого класса обработки;

  • при закреплении деталей должен быть большой угол наклона конуса относительно стационарного резца;

  • длина конуса не превышает 15 мм;

  • заготовка конической формы изготовлена из твердого сплава.

Способы обработки конических поверхностей выбираются исходя из указанных критериев.

Конические отверстия

Для обработки конических отверстий в сплошном материале существует два этапа:

  • сверление;

  • развертывание;

В первом случае используют сверло с диаметром равным или меньшим на 2-3 мм чем предполагаемое отверстие.

Размерную дельту уменьшают за счет финальной расточки. Сначала выбирается крупное сверло, которым пробивается отверстие, на глубину, меньше заданной. Затем тонкими сверлами производится каскадное сверление отверстия и доведение глубины до заданной.

При использовании нескольких сверл, внутренний конус соответствует заданным размерам и не имеет ступенчатых переходов.

При развертке отверстий используются сверла с тремя видами рабочей поверхности:

  • первичные (обдирочные). Поверхность сверла имеет редкие грубые зубья, расположенные по винтовой спирали. При работе с этим сверлом снимается большой слой материала и формируется профиль отверстия;

  • вторичное. У этого сверла больше канавок и зубьев, что позволяет добиться более четкого профиля отверстия и убрать излишки металла внутри;

  • третье (чистовое). Поверхность этого сверла имеет прямые зубья, которые позволяют сделать «чистую» проходку и убрать ступенчатый эффект после двух предыдущих разверток.

Глубину и диаметр полученных отверстий проверяют при помощи пробок-калибров.

Обработка цилиндрических поверхностей

Обработка цилиндрических поверхностей на токарном станке – это две разные технологии, одна из которых позволяет работать с внешней поверхностью (валы, втулки, диски), а другая – с внутренней (отверстия).

Для работы используются резцы, сверла, развертки.

Использование определенного типа инструмента зависит от диаметра отверстия (толщины вала), класса чистоты обработки и шероховатости поверхности.

Детали с цилиндрической формой широко используются в машиностроении и тяжелой промышленности, а качество отверстий в сплошном материале определяет степень стыковки элементов конструкции, общую механическую прочность узла и длительность эксплуатации изделия.

Обработка наружных цилиндрических поверхностей заключается в доведении заготовки до заданной толщины путем снятия стружки при помощи резца. Для этого деталь располагается параллельно полу и закрепляется на токарном станке.

Проходом резца вдоль поверхности вращения позволяет достигнуть необходимого класса обработки и толщины детали.

Обработка цилиндрических поверхностей наружного типа делается в три этапа:

  • черновая обточка. При таком методе получают шероховатость до 3-го класса и точность поверхности до 5-го;

  • чистовая обработка. Класс точности возрастает до 4-го, а шероховатость до 6-го;

  • чистовая тонкая (сверхточная). Степень шероховатости на уровне 9-го класса, а точность до 2-го.

В зависимости от желаемых показателей мастер использует одну или несколько стадий обработки.

Ввиду того, что при изготовлении многоступенчатых валов из цельной заготовки значительная часть материала становится стружкой, в современном производстве заготовки получают методом литья, а на станке проводится доводка детали до заданных параметров.

Обработка внутренних цилиндрических поверхностей – это достижение заданного класса точности при работе с отверстиями.

По своему типу отверстия делятся на категории:

  • сквозные;

  • глухие (досверленные до определенной глубины);

  • глубокие со ступенчатой структурой (несколько диаметров на разных глубинах).

Исходя из типа отверстия и его габаритных размеров, применяются сверла определенной формы и диаметра.

Для достижения заданного класса точности мастера используют несколько разновидностей инструментов и производят обработку внутренней поверхности в три этапа, так же, как и с внешним цилиндром (черновое сверление, чистовое и высокоточное).

Тип инструмента зависит от твердости материала и заданных технических характеристик отверстия.

Современные технологии обработки конических и цилиндрических поверхностей демонстрируются на ежегодной выставке « ».

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»