Число бога, числа фибоначчи, золотое сечение. Исследовательская работа "числа фибоначчи"

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Фибоначчи Леонардо Пизанский (лат. Leonardo Pisano, Пиза, около 1170 -- около 1250) -- это первый крупный математик средневековой Европы. Более известен под прозвищем Фибонамччи (Fibonacci), что в переводе с итальянского означает «хороший сын родился» (Figlio Buono Nato Ci).

О бытие Фибоначчи известно немного. Неизвестна даже точная дата его рождения. Предполагается, что Фибоначчи родился предположительно в 1170 г

Леонардо Фибоначчи был знаменитым итальянским математиком, он славился своим умением делать расчеты. Однажды его осенило и он открыл простую последовательность чисел, соотношения между которыми описывали естественные пропорции всех тел вселенной!

Леонардо Фибоначчи был выдающимся математиком средневековья. Плоды его математических трудов применяются во многих науках, искусстве и повседневной жизни по сей день.

Заслугой Леонардо Фибоначчи является ряд чисел Фибоначчи. Считается, что об этом ряде было известно на Востоке, но именно Леонардо Фибоначчи опубликовал этот ряд чисел в книге «Liber Abaci» (сделал он это для демонстрации размножения популяции кроликов).

Эллиотт писал: "Закон пpиpоды включает в pассмотpение важнейший элемент- ритмичность. Закон пpиpоды - это не некая система, не метод игры на рынке, а явление, хаpактеpное, видимо, для хода любой человеческой деятельности. Его применение в пpогнозиpовании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Мы сосредоточимся на способности делать предсказания и попытаемся выяснить, возможно это или нет. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "Любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Последовательность Фибоначчи, известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.

Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

У этой последовательности есть ряд математических особенностей, которых обязательно нужно коснуться. Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена последовательности к предшествующему ему колеблется около числа 1,618, через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618, что обратно пропорционально 1,618. Если мы будем делить элементы последовательности через одно, то получим числа 2,618 и 0,382, которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

Природа как бы решает задачу сразу с двух сторон и складывает полученные результаты. Как только получает в сумме 1, то осуществляет переход в следующее измерение, где начинает строить все сначала. Но тогда она и должна строить это золотое сечение по определенному правилу. Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций и для порождения золотого сечения пользуется другим рядом, - рядом Фибоначчи.

Чудесные свойства ряда Фибоначчи проявляются и в самих числах, являющихся членами этого ряда. Расположим члены ряда Фибоначчи по вертикали., а затем вправо, в порядке убывания, запишем натуральные числа.

21 20 19 18 17 16 15 14 13

34 33 32 31 30 29 28 27 26 25 24 23 22 21

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

Каждая строчка начинается и завершается числом Фибоначчи, т. е. в каждой строчке всего два таких числа. "синие" числа - 4, 7, 6, 11, 10, 18, 16, 29, 26, 47, 42 обладают особыми свойствами (второй уровень иерархии ряда Фибоначчи):

(5-4)/(4-3) = 1/1

(8-7)/(7-5) = 1/2 и (8-6)/(6-5) = 2/1

(13-11)/(11-8) = 2/3 и (13-10)/(10-8) = 3/2

(21-18)/(18-13) = 3/5 и (21-16)/(1б-13) = 5/3

(34-29)/(29-21) = 5/8 и (34-26)/(26-21) = 8/5

(55-47)/(47-34) = 8/13 и (55-42)/(42-34) = 13/8

Мы получили дробный ряд Фибоначчи, который, возможно, «исповедуют» коллективные спины элементарных частиц и атомов химических элементов.

Представим эти числа как последовательность рычажных весов

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Фибоначчи по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение, которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 1,618, а с к b 2,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.

Ряд Фибоначчи - это не только математическая загадка, мы встречаемся с ним каждый день в повседневной жизни:

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Раковина в форме спирали - форма раковины заинтересовала Архимеда и он выяснил, что увеличение длины завитков раковины - это постоянная величина и равна она 1,618.

Алое многолистный.

Брокколи романеско.

Подсолнечник: Семена в подсолнухе, располагаются так же в виде спирали.

Сосновая шишка.

Рост растений тоже происходит в соответствии с числовым рядом Фибоначчи - от ствола отходит ветка, на которой появляется лист, затем происходит длинный выброс и снова появляется листок, но он уже короче предыдущего. Затем опять выброс, но и он короче предыдущего. В этой картине, первый выброс равен 100%, второй 62%, а третий 38%(уровни Фибоначчи, используемые в торговле) и т.д. С длиной лепестков все выглядит точно так же.

Ящерица - если поделить ящерицу на хвост и тело, то соотношение их будет 0,62 к 0,38.

Пирамиды - длина ребра пирамиды равна 783.3 футам, а высота пирамиды равна 484.4 футам. Соотношение длины ребра/высота пирамиды составляет 1,618.

Как видно, числовой ряд Фибоначчи широко представлен в нашей жизни: в строении живых существ, сооружений, с его помощью даже описывается устройство Галактик. Все это свидетельствует об универсальности математической загадки числового ряда Фибоначчи.

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама последовательность далека от совершенства, как и всё в этом мире.

Есть предположение, что последовательность Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотое сечение логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любой последовательности достаточно знать три её члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности явлется степенью Золотой Пропорции (z). Часть ряда выглядит примерно так: ... z-5; z-4; z-3; z-2; z-1; z0; z1; z2; z3; z4; z5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618, тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618, но и сложением двух предыдущих. Таким образом экспоненциальный рост в последовательности обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:

От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Прикладное значение ряда Фибоначчи и Золотого Сечения заслуживает отдельного сайта. Сейчас лишь скажу, что, например, элементы ряда Фибоначчи применяются для вычисления скользящих средних (не говоря уже о росте популяции кроликов), и шедевры мирового искусства содержат в себе Золотое Сечение.

А пока, помните, что Фибоначчи -- легендарная личность в математике, экономике и финансах; он обнародовал Арабские числа и представил магический ряд чисел.

ряд число фибоначчи

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В последнее время, работая в индивидуальных и групповых процессах с людьми, я возвращался к мыслям об объединении всех процессов (кармических, психических, физиологических, духовных, трансформационных и др.) в одно.

Друзья за завесой всё шире раскрывали образ многомерного Человека и взаимосвязи всего во всём.

Внутреннее побуждение подтолкнуло меня вернуться к старым исследованиям с цифрами и ещё раз просмотреть книгу Друнвало Мельхиседека "Древняя тайна цветка жизни".

В это время в кинотеатрах показывали фильм "Код да Винчи". Я не намерен обсуждать качество, ценность и истинность этого фильма. Но момент с кодом, когда цифры стали стремительно прокручиваться, стал для меня одним из ключевых в этом фильме.

Интуиция подсказывала мне о том, что стоит обратить внимание на числовую последовательность Фибоначчи и Золотое Сечение. Если вы заглянете в Интернет с целью найти что-нибудь о Фибоначчи, то на вас обрушится лавина информации. Вы узнаете, что об этой последовательности знали во все времена. Она представлена в природе и космосе, в технике и науке, в архитектуре и живописи, в музыке и пропорциях в теле человека, в ДНК и РНК. Многие исследователи этой последовательности пришли к мнению, что ключевые события в жизни человека, государства, цивилизации также подчинены закону золотого сечения.

Создаётся впечатление, что Человеку дана фундаментальная подсказка .

Тогда возникает мысль, что Человек осознанно может применить принцип Золотого Сечения для восстановления здоровья и коррекции судьбы, т.е. упорядочивания происходящих процессов в собственной вселенной, расширения Сознания, возвращения в Благосостояние.

Вместе вспомним последовательность Фибоначчи:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025…

Каждое последующее число образуется путём сложения двух предыдущих:

1+1=2, 1+2=3, 2+3=5 и т.д.

Теперь я предлагаю каждое число ряда привести к одной цифре: 1, 1, 2, 3, 5, 8,

13=1+3(4), 21=2+1(3), 34=3+4(7), 55=5+5(1), 89= 8+9(8), 144=1+4+4(9)…

Вот что у нас получилось:

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9…1, 1, 2…

последовательность из 24 чисел, которая снова повторяется с 25-го:

75025=7+5+0+2+5=19=1+0=1, 121393=1+2+1+3+9+3=19=1+0=1…

Не кажется ли вам странным или закономерным, что

  • в сутках — 24 часа,
  • космических домов — 24,
  • нитей ДНК — 24,
  • 24 старца с Бого-Звезды Сириус,
  • повторяющаяся последовательность в ряде Фибоначчи — 24 цифры.

Если получившуюся последовательность записать следующим образом,

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9

8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

то мы увидим, что 1-е и 13-е число последовательности, 2-е и 14-е,3-е и 15-е, 4-е и 16-е … 12-е и 24-е в сумме дают 9.

3 3 6 9 6 6 3 9

При тестировании этих числовых рядов у нас получился:

  • Детский Принцип;
  • Отцовский Принцип;
  • Материнский Принцип;
  • Принцип Единства.

Матрица Золотого Сечения

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9

2 2 4 6 1 7 8 6 5 2 7 9 7 7 5 3 8 2 1 3 4 7 2 9

4 4 8 3 2 5 7 3 1 4 5 9 5 5 1 6 7 4 2 6 8 5 4 9

3 3 6 9 6 6 3 9 3 3 6 9 6 6 3 9 3 3 6 9 6 6 3 9

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9

8 8 7 6 4 1 5 6 2 8 1 9 1 1 2 3 5 8 4 3 7 1 8 9

8 8 7 6 4 1 5 6 2 8 1 9 1 1 2 3 5 8 4 3 7 1 8 9

8 8 7 6 4 1 5 6 2 8 1 9 1 1 2 3 5 8 4 3 7 1 8 9

7 7 5 3 8 2 1 3 4 7 2 9 2 2 4 6 1 7 8 6 5 2 7 9

4 4 8 3 2 5 7 3 1 4 5 9 5 5 1 6 7 4 2 6 8 5 4 9

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9

5 5 1 6 7 4 2 6 8 5 4 9 4 4 8 3 2 5 7 3 1 4 5 9

6 6 3 9 3 3 6 9 6 6 3 9 3 3 6 9 6 6 3 9 3 3 6 9

2 2 4 6 1 7 8 6 5 2 7 9 7 7 5 3 8 2 1 3 4 7 2 9

8 8 7 6 4 1 5 6 2 8 1 9 1 1 2 3 5 8 4 3 7 1 8 9

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Практическое применение ряда Фибоначчи

Один мой друг выразил намерение индивидуально поработать с ним на тему развития своих возможностей и способностей.

Неожиданно в самом начале в процесс пришёл Саи Баба и пригласил следовать за ним.

Мы стали подниматься вверх внутри Божественной Монады друга и, выйдя из неё через Причинное Тело, оказались в другой реальности на уровне Космического Дома.

Кто изучал труды Марка и Элизабет Клер Профетов, знают учение о Космических Часах, которое им передала Мать Мария.

На уровне Космического Дома Юрий увидел круг, обладающий внутренним центром с 12-ю стрелками.

Старец, который встретил нас на этом уровне, сказал, что перед нами Божественные Часы и 12-ть стрелок олицетворяют 12-ть (24) Проявлений Божественных Аспектов… (возможно Творцов).

Что касается Космических Часов, то они располагались под Божественными по принципу энергетической восьмёрки.

— В каком режиме по отношению к тебе находятся Божественные Часы?

— Стрелки у Часов стоят, нет движения. Ко мне приходят сейчас мысли о том, что много эонов лет назад я отказался от Божественного Сознания и пошёл другим путём, путём Мага. Все мои магические артефакты и амулеты, которые у меня и во мне скопились за множество воплощений, на этом уровне выглядят как детские погремушки. На тонком плане они представляют собой образ магических энергетических одежд.

— Завершен. Тем не менее, я благословляю мой магический опыт. Проживание этого опыта искренне побудило меня вернуться к первоистоку, к целостности. Мне предлагают снять с себя магические артефакты и встать в центр Часов.

— Что необходимо сделать, чтобы активировать Божественные Часы?

— Появился опять Саи Баба и предлагает выразить намерение о соединении Серебряной Струны с Часами. Ещё он говорит, что у тебя есть какой-то числовой ряд. Он — ключ к активации. Перед внутренним взором возникает образ Человека Леонарда да Винчи.

— 12 раз.

— Прошу богоцентрировать весь процесс и направляю действие энергии числового ряда на активацию Божественных Часов.

Читаю вслух 12 раз

1 1 2 3 5 8 4 3 7 1 8 9 8 8 7 6 4 1 5 6 2 8 1 9…

В процессе чтения стрелки на Часах пошли.

По серебряной струне пошла энергия, которая соединила все уровни Юриной Монады, а также — земную и небесную энергии…

Самое неожиданное в этом процессе было то, что на Часах появились четыре Сущности, которые являются некоторыми частями Единого Целого с Юрой.

Во время общения выяснилось, что когда-то произошло разделение Центральной Души, и каждая часть выбрала свою область в мироздании для реализации.

Было принято решение об интеграции, что и произошло в центре Божественных Часов.

Результатом этого процесса явилось создание на этом уровне Общего Кристалла.

После этого, я вспомнил, что Саи Баба как-то говорил о неком Плане, который предполагает соединение сначала двух Сущностей в одно, потом четырёх и так далее по бинарному принципу.

Безусловно, что этот числовой ряд не является панацеей. Это всего лишь инструмент, позволяющий быстро произвести необходимую работу с человеком, сонастроить его вертикально с разными уровнями Бытия.

Войнами и кровью. Казалось бы, ни о какой науке в это время и речи быть не может. И, тем не менее, два величайших открытия приходят к нам из этой эпохи - арабские цифры и последовательность Фибоначчи. Были, конечно, и другие научные открытия, но сейчас речь пойдёт не о них.

Оставив в стороне историю арабских цифр, более пристально присмотримся к последовательности Фибоначчи - что же она собой представляет, и чем она так знаменита. На самом деле последовательность Фибоначчи является рядом цифр, в которых старший член последовательности равняется сумме двух ближайших младших членов последовательности. В результате таких действий получится такие числа:

1; 1; 2; 3; 5; 8; 13; 21 и т.д.

Они называются а все вместе они образуют ряд Фибоначчи. Но дело даже не в самих числах, а в соотношениях между ними. Так, отношение числа в последовательности к предыдущему члену последовательности даёт в результате значение, близкое к 1,618. И чем цифры, используемые для такого отношения, больше, тем точнее соблюдается это значение.

Другим, не менее интересным фактом, которым обладает последовательность Фибоначчи, является отношение предыдущего члена к последующему. Это отношение приближается к значению 0,618 и является обратной величиной 1,618.

Если брать отношение других чисел из последовательности Фибоначчи, не ближайших, а, например, через одно или через два, то результатом будут другие значения: для членов последовательности, взятых через один, будет получаться число, стремящееся к 2,618. При вычислении отношения старшего члена к младшему через два члена последовательности, результат будет стремиться к 4,236. Если рассмотреть по такому же принципу отношения младших членов последовательности к старшим (через один или через два члена), то будут получены обратные значения уже полученным цифрам: 0,382 (обратное значение числа 2,618), следующее - 0,236 (обратное значение 4,236) и так далее.

На первый взгляд, это всё просто любопытные сведения, игра цифр, не имеющая практической реализации. Однако это совсем не так. В технике, в искусстве, в архитектуре существует понятие золотого сечения. Им является соотношение частей какого-либо предмета между собой, создающее наиболее гармоничное восприятие предмета в целом. Очень часто золотым сечением пользуются художники и архитекторы, добиваясь от своих картин и сооружений впечатления гармонии. Этим же соотношением рекомендуют пользоваться фотографы при компоновке кадра. Одно из правил гласит: для получения хорошего снимка дели кадр на три части и помещай центр композиции на пересечении вертикальной и горизонтальной линий, составляющих 2/3 горизонтали и вертикали кадра. А является одним из коэффициентов Фибоначчи - 1,618. Именно такое соотношение частей и целого обеспечит наиболее гармоничное восприятие. Так что, последовательность Фибоначчи служит не только игрой ума, но и является буквально фундаментом, на котором стоят гармония и красота восприятия окружающего мира.

Соотношения Фибоначчи справедливы и в живой природе. Касаться они могут самых разных областей. Так, раковина улитки, имеющая форму спирали, тоже подчиняется соотношениям Фибоначчи. Рост растений, число веток, листьев, их расположение зачастую также располагаются в соответствии с числами и коэффициентами Фибоначчи.

Ну и самое известное применение чисел Фибоначчи - в торговле на финансовых рынках. В практике трейдеров используются как цифры, составляющие последовательность Фибоначи, так и коэффициенты Фибоначчи. Применяются эти коэффициенты для планирования значимых уровней, на которых можно ожидать изменения поведения цены.

Кроме прямого Фибоначчи существует множество других методов торговли, созданных с их использованием. К ним можно отнести линии Фибоначчи, зоны Фибоначчи, проекции Фибоначчи и т.д. Это помогает трейдерам прогнозировать поведение рынка, заранее подготовиться к возможным изменениям поведения цен и спланировать свою торговлю.

Всё вышеописанное не охватывает всех проявлений влияния чисел и последовательности Фибоначчи в науке, технике, искусстве, но даёт представление о том, что же это такое - последовательность Фибоначчи.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»