Органические вещества. Классы органических веществ. Классификация и номенклатура органических веществ (тривиальная и международная)

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

При переходе от неорганической к органической химии можно проследить, как отличается классификация органических и неорганических веществ. Мир органических соединений обладает разнообразием и многочисленностью их вариантов. Классификация органических веществ не только помогает разобраться в этом изобилии, но и подводит чёткую научную базу под их изучение.

В качестве основы для распределения по классам избрана теория химического строения. Основу изучения органики составляет работа с самым многочисленным классом, который принято называть основным для органических веществ - углеводородами. Прочие представители мира органики рассматриваются как их производные. Действительно, при изучении их структуры не трудно заметить, что синтезирование этих веществ происходит путём замены (замещения) в структуре углеводорода одного, а иногда и нескольких водородных звеньев на атомы других химических элементов, а иногда и на целые ветки-радикалы.

Классификация органических веществ взяла за основу углеводороды ещё и по причине простоты их состава, да и углеводородная составляющая является наиболее весомой частью большинства известных органических соединений. На сегодняшний день из всех известных относящихся к миру органики, соединения, построенные на основе имеют значительное преобладание. Все остальные вещества либо находятся в меньшинстве, позволяя отнести их в разряд исключения из общего правила, либо настолько неустойчивы, что их получение затруднительно даже в наше время.

Классификация органических веществ путём разделения на отдельные группы и классы позволяет выделить два крупных органических класса ациклических и циклических соединений. Само их название позволяет сделать вывод о типе построения молекулы. В первом случае это цепочка из углеводородных звеньев, а во втором - молекула представляет собой кольцо.

Ациклические соединения могут иметь разветвления, а могут составлять простую цепочку. Среди названий этих веществ можно встретить выражение "жирные или алифатические углеводороды". Они могут быть предельными (этан, изобутан, или непредельными (этилен, ацетилен, изопрен), в зависимости от типа связи некоторых углеродных звеньев.

Классификация органических веществ, относящихся к циклическим соединениям, подразумевает дальнейшее разделение их на группу карбоциклических и группу гетероциклических углеводородов.

Карбоциклические «кольца» составлены лишь атомами углерода. Они могут быть алициклическими (насыщенными и ненасыщенными), а также являться ароматическими карбоциклическими соединениями. В алициклических соединениях просто происходит соединение двух концов углеродной цепочки, а вот ароматические в своей структуре имеют так называемое бензольное кольцо, которое оказывает существенное влияние на их свойства.

В гетероциклических веществах можно встретить атомы других веществ, наиболее часто эту функцию выполняет азот.

Следующим составляющим элементом, влияющим на свойства органических веществ, является наличие функциональной группы.

Для галогенопроизводных углеводородов в качестве функциональной группы может выступить один, а то и несколько атомов галогенов. Спирты получают свои свойства благодаря наличию гидроксогрупп. Для альдегидов характерной особенностью является наличие альдегидных групп, для кетонов - карбонильных групп. Карбоновые кислоты отличаются тем, что в их состав входят карбоксильные группы, а амины обладают аминогруппой. Для нитросоединений характерно наличие нитрогруппы.

Многообразие видов углеводородов, а также их свойств, основано на самом различном типе комбинирования. К примеру, состав одной молекулы может включать две и более одинаковых, а иногда и различных функциональных группы, определяя специфические свойства этого вещества глицерин).

Большую наглядность даст для рассмотрения вопроса (классификация органических веществ) таблица, которую легко можно составить на основе информации, изложенной в тексте данной статьи.

Органические соединения классифицируют, учитывая два основных структурных признака:


Строение углеродной цепи(углеродного скелета);


Наличие и строение функциональных групп.


Углеродный скелет (углеродная цепь) - последовательность химически связанных между собой атомов углерода.


Функциональная группа - атом или группа атомов, определяющие принадлежность соединения к определенному классу и ответственные за его химические свойства.

Классификация соединений по строению углеродной цепи

В зависимости от строения углеродной цепи органические соединения делят на ациклические и циклические.


Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.


Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные),включающие кратные связи C = C и C C.

Ациклические соединения

Предельные:




Непредельные:




Ациклические соединения подразделяют также на соединения с не разветвленной и разветвленной цепью. В этом случае учитывается число связей атома углерода с другими углеродными атомами.



Цепь, в которую входят третичные или четвертичные атомы углерода, является разветвленной (в названии часто обозначается приставкой «изо»).


Например:




Атомы углерода:


Первичный;


Вторичный;


Третичный.


Циклические соединения - соединения с замкнутой углеродной цепью.


В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.


Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

Карбоциклические соединения

Алицеклические:




Ароматические:




Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной) - кислород, азот, серу и др.

Гетероциклические соединения

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами.


Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы.


В зависимости от природы функциональных групп органические соединения делят на классы. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:

Классы органических соединений



Примечание: к функциональным группам иногда относят двойную и тройную связи.


В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.


Например: HO- CH 2 - CH 2 -OH (этиленгликоль); NH 2 -CH 2 - COOH (аминокислота глицин ).


Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Органические вещества - это такие соединения, которые имеют в своем составе атом Карбона. Еще на ранних этапах развития химии все вещества разделяли на две группы: минеральные и органические. В те времена считали, что для того, чтобы синтезировать органическое веществонеобходимо иметь небывалую «жизненную силу», которая присущая только живым биосистемам. Поэтому осуществить синтез органических веществ из минеральных невозможен. И лишь в начале 19 века Ф. Веллер опровергнул существующее мнение и синтезировал карбамид из цианата аммония, то есть он получил органическое вещество из минерального. После чего рядом ученных были синтезированы хлороформ, анилин, ацетатная кислота и множество других химических соединений.

Органические вещества лежат в основе существования живой материи, а также являются основными продуктами питания для человека и животных. Большинство органических соединений являются сырьем для разных отраслей промышленности - пищевой, химической, легкой, фармацевтической и т.д.

На сегодня известно более 30 млн. разнообразных органических соединений. Поэтому органические веществапредставляют наиболее обширный класс Разнообразие органических соединений связано с уникальными свойствами и структурой Карбона. Соседние атомы Карбона связываются между собой одинарными или кратными (двойной, тройной) связями.

Характеризируются наличием ковалентных связей С-С, а также полярных ковалентных связей С-N, C-O, C-Hal, C-металл и т.д. Реакции, проходящие с участием органических веществ, имеют некоторые особенности по сравнению с минеральными. В реакциях неорганических соединений, как правило, участвуют ионы. Зачастую такие реакции очень быстро проходят, иногда мгновенно при оптимальной температуре. В реакциях с обычно участвуют молекулы. Следует сказать, что в этом случае одни ковалентные связи разрываются, а другие при этом образуются. Как правило, данные реакции протекают значительно медленнее, а для их ускорения необходимо повысить температуру или использовать катализатор (кислота или основание).

Как образуются органические вещества в природе? Большая часть органических соединений в природе синтезируется в из диоксида карбона и воды в хлорофиллах зеленых растений.

Классы органических веществ.

Основана на теории О. Бутлерова. Систематическая классификация является фундаментом научной номенклатуры, что дает возможность назвать органическое вещество, исходя из существующей структурной формулы. Классификация основана на двух основных признаках - структуре карбонового скелета, количеству и размещению функциональных групп в молекуле.

Карбоновый скелет - это стабильная в разных часть молекулы органического вещества. В зависимости от его строения все органические вещества разделяются на группы.

К ациклическим соединениям относят вещества с прямой или разветвленной углеродной цепью. К карбоциклическим соединениям относят вещества с циклами, их разделяют на две подгруппы - алициклические и ароматические. Гетероциклические соединения - вещества, в основе молекул которых циклы, образованы атомами Карбона и атомами других химических элементов (Оксиген, Нитроген, Сульфур), гетероатомами.

Также органические вещества классифицируют по наличию функциональных групп, которые входят в состав молекул. Например, классы углеводородов (исключение - в их молекулах нет функциональных групп), фенолов, спиртов, кетонов, альдегидов, аминов, эфиров, карбоновых кислот, и т.д. Следует помнить, что каждая функциональная группа (СООН, OH, NH2, SH, NH, NO) обуславливает физико-химические свойства данного соединения.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»