Пластмассы. Окружающий мир. Из чего делают пластмассу и что потом с ней делать

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Полимеры являются важной частью химической индустрии. Поэтому все, кто работает в сфере химической индустрии или увлекается ею, знают основные виды пластмасс .

Химическая промышленность специализируется на производстве продуктов путем химической переработки сырья. Отрасль достаточно сложно структурирована и имеет в своем составе более 20 сегментов. Одним из них является производство полимеров. Это непосредственно касается и производства пластмасс, которое относится к органической химии.

Производство полимерных материалов динамично развивается и набирает большие обороты. В некоторой степени оно определяет развитие научно-технического прогресса.

Отрасль производства пластмасс занимает особое место в химической индустрии. Они используются во многих отраслях народного хозяйства.

Виды пластмасс

Пластмассами называются органические материалы, созданные на основе синтетических или природных полимеров. Полимеры – высокомолекулярные природные или синтетические соединения.

Пластмассы делятся на несколько групп. Основные виды: простые и сложные. Простые состоят из чистых полимеров, а сложные имеют в своем составе помимо полимеров различные связующие жидкости, пластификаторы, стабилизаторы, красители, отвердители, смазки, антистатики и т.д.

Пластичные массы имеют низкую теплопроводность, большое тепловое расширение. В отличие от стали они расширяются в 10-30 раз больше. Они склонны к немагнитности, химически стойки и обладают малой плотностью. Из них можно изготавливать другие виды материалов, то есть они являются технологичными.

Что касается недостатков, то пластмассы склонны к старению, у них низкая вязкость по сравнению с другими веществами. Им характерна низкая упругость и невысокая теплостойкость.

К основным видам пластмасс относят термопласты и термореактопласты. Термопласты имеют способность при нагреве расплавляться, а при низких температурах обратно затвердевать. Это свойство зависит от структуры полимеров: она может быть линейной, разветвленной или аморфной.

Термореактопласты не имеют возможности размягчаться. Они сначала плавятся, а потом затвердевают, не подвергаясь повторной обработке.

Пластмассы делятся на:

  • ткани и пленки;

  • стеклопластики;

  • оргстекло;

  • пенопласты;

  • винипласт;

  • древесные пластики.

Все эти виды пластических масс создаются на производстве и активно применяются в повседневной жизни. Синтетические пластмассы создаются путем выделения из угля, нефти или природного газа с помощью реакций полимеризации, поликонденсации и полиприсоединения исходных веществ.

В зависимости от назначения существуют следующие методы обработки основных видов пластмасс:

  • литьё;

  • экструзия;

  • прессование;

  • виброформирование;

  • вспенивание;

  • отливка;

  • сварка;

  • вакуумная формовка.

Производство основных видов пластмасс в химической отрасли

Изготовление пластичных масс нашло широкое применение в быту. Однако в современном мире их производство составляет огромные масштабы, которые негативно влияют на окружающую среду.

Так, например, полиэтиленовый пакет или пластиковая бутылка разлагаются на протяжении пятидесяти лет, загрязняя окружающую среду.

Учитывая эти обстоятельства, возникает вопрос вторичной переработки и утилизации пластичных масс. Их максимальное использование порождает новые виды материалов, что способствует развитию не только производства пластмассовой индустрии, а и химической промышленности в целом.

Основные виды пластмасс – важная составляющая химической отрасли. Достижения и проблемы индустрии наиболее широко и в полном масштабе открывает перед производителями и потребителями ежегодная выставка «Химия». А ее организатором уже который год является один из крупнейших мировых выставочных комплексов ЦВК «Экспоцентр».

Колоссальный опыт и громадный багаж знаний его специалистов позволяет провести мероприятие на самом высоком уровне. Это способствует значительному влиянию на развитие химической индустрии, а для ее представителей открывает широкие возможности в области исследований.

Также «Химия» способствует заключению новых контрактов с иностранными компаниями, что значительно увеличивает конкурентоспособность товаров.

Занимаясь с детьми всегда открываешь для себя много нового. Пока я готовила материал для занятий по окружающему миру - прочла много интересного про Полярную звезду (я даже не знала, в чем ее особенность) и размеры Вселенной, историю Олимпийских игр и наконец-то сама перестала путать пресмыкающихся и земноводных:). Но одна тема задела меня особенно.

Из чего делают пластмассу

Сейчас мы изучаем раздел "хозяйство". Изучаем довольно поверхностно, поскольку профессии, производство хлеба и подобные вопросы мы раньше уже затрагивали. Но, чтобы вспомнить посмотрели несколько видео (спасибо Татьяне), в том числе и про изготовление пластмассы.

И все бы хорошо. Ролик нарисован довольно понятно. Но до этого мы с Варварой знакомились с темой загрязнения мирового океана и многие вещи меня шокировали. Я просто никогда не задумывалась об этом! Мне всегда было жалко выбрасывать стекло, но о пластмассе я просто не думала. А многие предпочтут вообще ухмыльнуться и махнуть на это рукой. Ведь мы уже не можем отказаться от пластик.

Куда уходит пластик...


  • Пластмасса - неестественный для природы материал и потому практически не разлагается. Пластик не "переварится" землей и не вернется в землю.

  • Полимеры изготавливают из не возобновляемого природного ресурса - нефти и газа.

  • Примерно 150 млн. тонн пластмассы производится ежегодно и этот объем увеличивается.

  • Практически 90% из того, что было произведено мы выбросим сразу или в течении нескольких месяцев (пакеты, бутылки, упаковки, зажигалки и тому подобное).

  • Пластиковые отходы нельзя складировать или закапывать. Пластик впитывает из воды токсичные вещества, эти соединения просачиваются в грунтовые воды.

  • Пластиковые отходы опасно жечь, при сжигании образуются токсичные газы, опасные для человека и атмосферы.

  • Пластиковые отходы можно перерабатывать, но на переработку идет лишь 5%, и предметы из переработанного пластика в третий раз переработать нельзя, они тоже не будут естественно разлагаться. Это лишь небольшая отсрочка и успокоение совести. Хотя это все-таки лучше.

  • "Биоразлагаемые" пластики - в большинстве маркетинговый ход, нет совершенно безопасных пластиковых отходов.

...в какие города

В мире есть города-свалки, куда из Европы и США свозят технологический и электронный мусор. Токсичные вещества в почве, воде и воздухе в этих местах превышают все мыслимые нормы. Но мы ведь этого не видим. Мы бросили мусор в мешок, мешок погрузили в машину, и мы наслаждаемся чистотой, удобством и одноразовыми вещами. А люди в городах-свалках редко доживают до 30 лет.

Пластиковая каша мирового океана

Но большинство отходов путешествуют сами по себе. В мировом океана существуют пять больших "мусороворотов", куда мировое течение сносит пластиковый мусор. Самое большое - Тихоокеанское мусорное пятно, или, как его называют, восточный мусорный континент. Это пятно взвеси крупных и мелких пластиковых частиц площадью около 700 - 1,5 млн квадратных километров, содержащие более ста миллионов тонн мусора.


  • В некоторых местах пластика в воде в несколько раз больше, чем планктона.

  • Пластик не разлагается, а рассыпается под воздействием води и солнца, и каждая его частичка становится токсичной. Сотни тысяч морских животных страдает от отравлений. Некоторые токсины вызывают гормональные сбои.

  • Черепахи погибают, глотая пластиковые пакеты, которые они принимают за медуз. Птицы кормят птенцов пластиковыми крышечками от бутылок.

Можно ли прожить без пластика

И пока ученые ищут более совершенные и коммерчески оправданные способы утилизации пластмассы и электронного мусора, мы его ежегодно и ежедневно пополняем. И мы уже не может отказаться от этого.

Для ребенка вся эта информация пока не понятна и сложна для восприятия. Но многие вопросы мы обсудили о том, что мы может сделать в кругу нашей семьи, нашего дома.

В стартовом ролике много преувеличений. Отсутствие пластмассы не вернет нас в каменный век, разумеется. Мы всегда покупали одежду только из хлопка и льна, мебель у нас деревянная, но мы не может отказаться от бытовой техники, зубной пасты и щетки, баночек для шампуней, выключателей и розеток, и сотни других вещей, наполняющих наш дом.

Мой муж, например, очень любит выкидывать. Для него легкость покупки и смены вещей - это что-то вроде символа удобства и состоятельности. И мои предложения, например, не выбрасывать бутылку, а налить воду дома и взять с собой, вместо того, чтобы покупать опять - он воспринимал только как скряжничество.

Но! наконец-то мы договорились обходиться без мелких игрушек из киндер-сюрпризов и Макдональдса! Я давно борюсь с ними. Как и вообще с частыми покупками мелких дешевых игрушек, большинство из которых не несут никакой пользы, кроме коммерческого дохода их создателям. Огромная индустрия псевдо-игрушек, направленных на коллекционирование, постоянные покупки, позволяющая нам "откупаться" от детей.

Мы постараемся чаще обращать внимание на альтернативы: деревянные и текстильные игрушки, жестяную и бумажную упаковку (например, яиц), не забывать брать с собой в магазин сумки, вместо десятка (!) пакетиков, которые здесь дают в супермаркетах, стараться продлить срок жизни вещей и вообще продуманно относиться к каждой новой вещи, переступающей порог нашего дома.

Да, это будет капля в море, вернее в океане с мусором. Но это ведь не оправдание не делать вообще ничего.

В наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Состав и свойства

Получение пластмасс

Пластмассы - это материалы, полученные на основе синтетических или естественных полимеров (смол). Синтезируются полимеры путем полимеризации или поликонденсации мономеров в присутствии катализаторов при строго определенных температурных режимах и давлениях.

В полимер с различной целью могут вводиться наполнители, стабилизаторы, пигменты, могут составляться композиции с добавкой органических и неорганических волокон, сеток и тканей.

Таким образом, пластмассы в большинстве случаев являются многокомпонентными смесями и композиционными материалами, у которых технологические свойства, в том числе и свариваемость, в основном определяются свойствами полимера.

В зависимости от поведения полимера при нагревании различают два вида пластмасс - термопласты, материалы, которые могут многократно нагреваться и переходить при этом из твердого в вязко-текучее состояние, и реактопласты, которые могут претерпевать этот процесс лишь однократно.

Особенности строения

Пластмассы (полимеры) состоят из макромолекул, в которых более или менее регулярно чередуется большое число одинаковых или неодинаковых атомных группировок, соединенных химическими связями в длинные цепи, по форме которых различают линейные полимеры, разветвленные и сетчато-пространственные.

По составу макромолекул полимеры делятся на три класса:

1) карбоцепные, основные цепи которых построены только из углеродных атомов;

2) гетероцепные, в основных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы;

3) элементоорганические полимеры, содержащие в основных цепях атомы кремния, бора, алюминия, титана и других элементов.

Макромолекулы обладают гибкостью и способны изменять форму под влиянием теплового движения их звеньев или электрического поля. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. Не перемещаясь в пространстве, каждая макромолекула находится в непрерывном движении, которое выражается в смене ее конформаций.

Гибкость макромолекул характеризует величина сегмента, т. е. число звеньев в ней, которые в условиях данного конкретного воздействия на полимер проявляют себя как кинетически самостоятельные единицы, например в поле ТВЧ как диполи. По реакции к внешним электрическим полям различают полярные (ПЭ, ПП) и неполярные (ПВХ, полиаксилонитрил) полимеры. Между макромолекулами действуют силы притяжения, вызванные ван-дер-ваальсовым взаимодействием, а также водородными связями, ионным взаимодействием. Силы притяжения проявляются при сближении макромолекул на 0,3-0,4 им.

Полярные и неполярные полимеры (пластмассы) между собой несовместимы - между их макромолекулами не возникает взаимодействия (притяжения), т. е. они между собой не свариваются.

Надмолекулярная структура, ориентация

По структуре различают два вида пластмасс - кристаллические и аморфные. В кристаллических в отличие от аморфных наблюдается не только ближний, но и дальний порядок. При переходе из вязко-текучего состояния в твердое макромолекулы кристаллических полимеров образуют упорядоченные ассоциации-кристаллиты преимущественно в виде сферолитов (рис. 37.1). Чем меньше скорость охлаждения расплава термопласта, тем крупнее вырастают сферолиты. Однако и в кристаллических полимерах всегда остаются аморфные участки. Изменяя скорость охлаждения, можно регулировать структуру, а следовательно, и свойства сварного соединения.

Резкое различие продольных и поперечных размеров макромолекул приводит к возможности существования специфического для полимеров ориентированного состояния. Оно характеризуется расположением осей цепных макромолекул преимущественно вдоль одного направления, что приводит к проявлению анизотропии свойств изделия из пластмассы. Получение ориентированных пластмасс осуществляется путем их одноосной (5-10-кратной) вытяжки при комнатной или повышенной температуре. Однако при нагреве (в том числе и при сварке) эффект ориентации снижается или исчезает, так как макромолекулы вновь принимают термодинамически наиболее вероятные конфигурации (конформации) благодаря энтропийной упругости, обусловленной движением сегментов.

Реакция пластмасс на термомеханический цикл

Все конструкционные термопласты при нормальных температурах находятся в твердом состоянии (кристаллическом или застеклованном). Выше температуры стеклования (Т ст) аморфные пластмассы переходят в эластическое (резиноподобное) состояние. При дальнейшем нагреве выше температуры плавления (T пл) кристаллические полимеры переходят в аморфное состояние. Выше температуры текучести Т T и кристаллические, и аморфные пластмассы переходят в вязкотекучее состояние Все эти изменения состояния обычно описываются термомеханическими кривыми (рис. 37.2), являющимися важнейшими технологическими характеристиками пластмасс. Образование сварного соединения происходит в интервале вязкотекучего состояния термопластов. Реактопласты при нагреве выше Т T претерпевают радикальные процессы и в отличие от термопластов образуют пространственные полимерные сетки, не способные к взаимодействию без их разрушения, на что требуется применение специальных химических присадок.


Основные пластмассы для сварных конструкций


Наиболее распространенными конструкционными пластмассами являются группы термопластов на основе полиолефинов: полиэтилена высокого и низкого давления, полипропилена, полиизобутилена.

Полиэтилен [..-СН 2 -СН 2 -...] n высокого и низкого давления - кристаллические термопласты, отличающиеся между собой прочностью, жесткостью, температурой текучести. Полипропилен [-СН 2 -СН(СН 3)-] n более температуростоек, чем полиэтилен, и обладает большей прочностью и жесткостью.

В значительных объемах используются хлорсодержащие пластики на основе полимеров и сополимеров винилхлорида и винилиденхлорида.

Поливинилхлорид (ПВХ) [-(СН 2 -СНСl-)] n - аморфный полимер линейного строения, в исходном состоянии является жестким материалом При добавке к нему пластификатора можно получить очень пластичный и хорошо сваривающийся материал - пластикат. Из жесткого ПВХ - винипласта - изготавливают листы, трубы, прутки, а из пластиката - пленку, шланги и другие изделия. Из ПВХ изготавливаются также вспененные материалы (пенопласты).

Значительную группу полимеров и пластмасс на их основе составляют полиамиды , содержащие в цепи макромолекул амидные группы [-СО-Н-]. Это в большинстве кристаллические термопласты с четко выраженной температурой плавления. Отечественная промышленность выпускает главным образом алифатические полиамиды, используемые для изготовления волокон, отливки деталей машин, получения пленок. К полиамидам относятся, в частности, широко известные поликапролактам и полнамид-66 (капрон).

Наибольшую известность из группы фторлонов получил политетрафтор-этилен-фторлон-4 (фторопласт 4). В отличие от других термопластов при нагреве он не переходит в вязкотекучее состояние даже при температуре деструкции (около 415°С), поэтому его сварка требует особых приемов. В настоящее время химической промышленностью освоен выпуск хорошо сваривающихся плавких фторлонов; Ф-4М, Ф-40, Ф-42 и др. Сварные конструкции из фторсодержащих пластиков обладают исключительно высокой стойкостью к агрессивным средам и могут воспринимать рабочие нагрузки в широком диапазоне температур.

На основе акриловой и метакриловой кислоты производятся акриловые пластики . Наиболее известная в практике производная на их основе - пластмасса полнметилметакрилат (торговая марка «плексиглас»). Эти пластики, обладающие высокой прозрачностью, используются как светопроводящие изделия (в виде листа, прутков и т. д.) Нашли применение также сополимеры метилметакрилата и акрилонитрила, которые обладают большей прочностью и твердостью. Все пластики этой группы хорошо свариваются.

Хорошей прозрачностью отличается группа пластиков на основе полистирола . Этот линейный термопласт хорошо сваривается тепловыми способами.

Для изготовления сварных конструкций преимущественно в электротехнической промышленности используют сополимеры стирола с метилстиролом, акрилонитрилом, метилметакрилатом и, в частности, акрилонитрилбутадиенстирольные (АБС) пластики. Последние отличаются от хрупкого полистирола более высокой ударной прочностью и теплостойкостью.

В сварных конструкциях находят применение пластмассы на основе поликарбонатов - сложных полиэфиров угольной кислоты. Они обладают более высокой вязкостью расплава, чем другие термопласты, однако свариваются удовлетворительно. Из них изготавливают пленки, листы, трубы и различные детали, в том числе декоративные. Характерными особенностями являются высокие диэлектрические и поляризационные свойства.

Формообразование деталей из пластмасс

Термопласты поставляются для переработки в гранулах размером 3-5 мм. Основными технологическими процессами изготовления полуфабрикатов и деталей из них являются: экструзия, литье, прессование, каландрирование, производимые в температурном интервале вязкотекучего состояния.

Трубопроводы из полиэтиленовых и поливинилхлоридных труб применяют для транспорта агрессивных продуктов, в том числе нефти и газа с содержанием сероводорода и углекислоты и химических (неароматических) реагентов в химическом производстве. Резервуары и цистерны для перевозки кислот и щелочей, травильные ванны и другие сосуды облицовываются пластмассовыми листами, соединяемыми с помощью сварки Герметизация пластикатом помещений, загрязняемых изотопами, покрытие полов линолеумом также осуществляются с помощью сварки. Консервация пищевых продуктов в тубы, коробки и банки, упаковка товаров и почтовых посылок резко ускоряются с применением сварки.

Машиностроительные детали . В химическом машиностроении свариваются корпуса и лопатки различного рода смесителей, корпуса и роторы насосов для перекачки агрессивных сред, фильтры, подшипники и прокладки из фторопласта, из полистирола сваривается осветительная арматура, из капрона неэлектропроводные шестерни, валики, муфточки, штоки, из фторлона - несмазывающиеся подшипники, вытеснители топлива и т д.

Оценка свариваемости пластмасс

Основные стадии процесса сварки

Процесс сварки термопластов состоит в активации свариваемых поверхностей деталей, либо находящихся уже в контакте (), либо приводимых в контакт после ( , и т. д.) или одновременно с активизацией ( , УЗ-сварка).

При плотном контакте активированных слоев должны реализоваться силы межмолекулярного взаимодействия.

В процессе образования сварных соединений (при охлаждении) происходит формирование надмолекулярных структур в шве, а также развитие полей собственных напряжений и их релаксация. Эти конкурирующие процессы определяют конечные свойства сварного соединения. Технологическая задача сварки состоит в том, чтобы максимально приблизить по свойствам шов к исходному - основному материалу.

Механизм образования сварных соединений

Реологическая концепция . Согласно реологической концепции, механизм образования сварного соединения включает два этапа - на макроскопическом и микроскопическом уровнях. При сближении под давлением активированных тем или иным способом поверхностей соединяемых деталей вследствие сдвиговых деформаций происходит течение расплава полимера. В результате этого удаляются из зоны контакта ингредиенты, препятствующие сближению и взаимодействию ювенильных макромолекул (эвакуируются газовые, окисленные прослойки). Вследствие разности скоростей течения расплава не исключено и перемешивание макрообъемов расплава в зоне контакта. Только после удаления или разрушения дефектных слоев в зоне контакта, когда ювенильные макромолекулы сблизятся на расстояния действия Ван-дер-Ваальсовых сил, возникает взаимодействие (схватывание) между макромолекулами слоев соединяемых поверхностей деталей. Этот аутогезионный процесс происходит на микроуровне. Он сопровождается взаимодиффузией макромолекул, обусловленной энергетическим потенциалом и неравномерностью градиента температур в зоне свариваемых поверхностей.

Итак, чтобы образовалось сварное соединение двух поверхностей, необходимо прежде всего обеспечить течение расплава в этой зоне.

Течение расплава в зоне сварки зависит от его вязкости: чем меньше вязкость, тем активнее происходят сдвиговые деформации в расплаве - разрушение и удаление дефектных слоев на контактирующих поверхностях, тем меньшее давление необходимо прилагать для соединения деталей.

Вязкость расплава в свою очередь зависит от природы пластмассы (молекулярной массы, разветвленности макромолекул полимера) и температуры нагрева в интервале вязкотекучести. Следовательно, вязкость может служить одним из признаков, определяющих свариваемость пластмассы: чем она меньше в интервале вязкотекучести, тем лучше свариваемость и, наоборот, чем больше вязкость, тем сложнее разрушить и удалить из зоны контакта ингредиенты, препятствующие взаимодействию макромолекул. Однако нагрев для каждого полимера ограничен определенной температурой деструкции Т д, выше которой происходит его разложение - деструкция. Термопласты различаются по граничным значениям температурного интервала вязкотекучести, т. е. между температурой их текучести Т T и деструкции Т д (табл. 37.2).


Классификация термопластов по их свариваемости . Чем шире интервал вязкотекучести термопласта (рис. 37.3), тем практически проще получить качественное сварное соединение, ибо отклонения по температуре в зоне шва отражаются менее на величине вязкости. Наряду с интервалом вязкотекучести и минимальным уровнем в нем значений вязкости заметную роль играет в реологических процессах при образовании шва градиент изменения вязкости в этом интервале. За количественные показатели свариваемости приняты: температурный интервал вязкотекучести ΔT, минимальное значение вязкости η min и градиент изменения вязкости в этом интервале.


По свариваемости все термопластичные пластмассы можно разбить по этим показателям на четыре группы (табл. 37.3).


Сварка термопластичных пластмасс возможна, если материал переходит в состояние вязкого расплава, если его температурный интервал вязкотекучести достаточно широк, а градиент изменения вязкости в этом интервале минимальный, так как взаимодействие макромолекул в зоне контакта происходит по границе, обладающей одинаковой вязкостью.

В общем случае температура сварки назначается, исходя из анализа термомеханической кривой для свариваемой пластмассы, принимаем ее на 10-15° ниже Т д. Давление принимается такое, чтобы эвакуировать расплав поверхностного слоя в грат либо разрушить его, исходя из конкретной глубины проплавления и теплофизических показателей свариваемого материала. Время выдержки t CB определяется исходя из достижения квазистационарного состояния оплавления и проплавления либо по формуле


где t 0 - константа, имеющая размерность времени и зависящая от толщины соединяемого материала и способа нагрева; Q - энергия активации; R - газовая постоянная; Т - температура сварки.

При экспериментальной оценке свариваемости пластмасс фундаментальным показателем является длительная прочность сварного соединения, работающего в конкретных условиях по сравнению с основным материалом.

Испытываются образцы, вырубленные из сварного соединения, на одноосное растяжение. При этом временной фактор моделируется температурой, т. е. используется принцип температурно-временной суперпозиции, основанный на допущении, что при данном напряжении связь между длительной прочностью к температурой однозначна (метод Ларсона-Миллера).

Методы повышения свариваемости

Схемы механизма образования сварных соединений термопластов . Повышение их свариваемости может производиться за счет расширения температурного интервала вязкотекучести, интенсификации удаления ингредиентов или разрушения дефектных слоев в зоне контакта, препятствующих сближению и взаимодействию ювенильных макромолекул.

Возможно несколько путей:

введение в зону контакта присадки в случае недостаточного количества расплава (при сварке армированных пленок), при сварке разнородных термопластов присадка по составу должна обладать сродством к обоим свариваемым материалам;

введение в зону сварки растворителя или более пластифицированной присадки;

принудительное перемешивание расплава в шве путем смещения соединяемых деталей не только вдоль линии осадки, но и возвратно-поступательно поперек шва на 1,5-2 мм или наложением ультразвуковых колебаний. Активизация в зоне контакта перемешивания расплава может производиться после оплавления стыкуемых кромок нагревательным инструментом, имеющим ребристую поверхность. Свойства сварного соединения могут быть улучшены последующей термической обработкой соединения. При этом снимаются не только остаточные напряжения, но возможно исправление структуры в шве и околошовной зоне, особенно у кристаллических полимеров. Многие из изложенных мероприятий приближают свойства сварных соединений к свойствам основного материала.

При сварке ориентированных пластмасс во избежание потери их прочности вследствие переориентации при нагреве до вязко-текучего состояния полимера применяют химическую сварку, т. е. процесс, при котором в зоне контакта реализуются радикальные (химические) связи между макромолекулами. Химическую сварку применяют и при соединении реактопластов, детали из которых не могут переходить при повторном нагреве в вязкотекучее состояние. Для инициирования химических реакций в зону соединения при такой сварке вводят различные реагенты в зависимости от соединяемого вида пластмасс. Процесс химической сварки, как правило, производится при нагреве места сварки.

Волченко В.Н. Сварка и свариваемые материалы т.1. -M. 1991

Эта небольшая статья будет посвящена пластику, вернее его маркировке. Почему мы решили сконцентрировать ваше внимание на этом банальном для всех материале, да именно потому, что он банальный. Это каждодневная привычка пользоваться пластиком для всего и везде порой играет с нами злую шутку. Мы уже не задумываемся о том, а можно ли вообще здесь и так применять пластиковые изделия, как мы привыкли это делать и как мы делаем каждый день. Осознание порой приходит спонтанно, но вникая в суть проблемы, ужасаешься как все серьезно. Именно исходя из выше перечисленных принципов, и ноток наших сегодняшних реалий, мы хотели бы довести до вас информацию по маркировке изделий из пластика. Рассказать о том, где и как они применяется, и насколько он может быть вреден для нас и всего живого.

№ 1 (PETE или PET) – полиэтилентерефталат. Самый распространенный тип пластика. Используется для разлива прохладительных напитков, кетчупов, растительного масла, косметических средств и прочего. Отличительная черта – дешевизна. Производство данного вида не требует особых затрат, этим и обусловлена его популярность. Использовать такой вид пластика можно лишь раз. При повторном использовании бутылка или коробка выделяет опасное вещество – фталат (токсичен, способен вызывать серьезные болезни нервной и сердечно-сосудистой системы). Поддается переработке, один из самых безопасных видов. При этом в Европе и США из данного вида пластика запрещено изготавливать детские игрушки.
№ 2 (HDPE или PE HD) – полиэтилен высокой плотности. Относительно недорогой, устойчив к температурным воздействиям. Такой пластик используется при изготовлении пластиковых пакетов, одноразовой посуды, пищевых контейнеров, пакетов для молока и тары для моющих и чистящих средств. Поддается переработке, годен для вторичного использования. Относительно безопасен, хотя может выделять формальдегид (токсичное вещество, которое поражает нервную, дыхательную и половую системы, может вызвать генетические нарушения у потомства).
№ 3 (PVC или V) - поливинилхлорид. Этот вид пластика используется в технических целях. К примеру, для изготовления пластиковых окон, элементов мебели, труб, скатертей, тары для технической жидкости и прочего. Противопоказан для пищевого использования. Пластик содержит бисфенол А, винилхлорид, фталаты, а так же может содержать кадмий. Один из самых опасных видов пластмассы. При сжигании выделяет в воздух очень опасные яды - канцерогенные диоксины.
№ 4 (LDPE или PEBD) – полиэтилен низкой плотности. Обществу известен по пакетам, мусорным мешкам, компакт-дискам и линолеуму. Довольно широкое распространение данного типа обусловлено его дешевизной. Безопасность относительна. ПЭТ-пакеты для организма человека практически безопасны (однако не забывайте об их влиянии на окружающую среду). В редких случаях тип PE-LD выделяет формальдегид. Поддается переработке и вторичному использованию.
№ 5 (PP) – полипропилен. Прочный и термостойкий. Из него изготавливают пищевые контейнеры, шприцы и детские игрушки. Сравнительно безопасен, но при некоторых обстоятельствах может выделять формальдегид (нагрев, и в процессе разложения со временем). В итоге, можно сказать, что он вреден для людей также как и другие виды пластика. Выигрыша никакого.
№ 6 (PS) – полистирол. Этот тип пластика вы встретите в мясном или молочном отделе. Из него сделаны стаканчики для йогурта, мясные лоточки, коробочки под овощи и фрукты, сэндвич-панели и теплоизоляционные плиты. При повторном использовании выделяет стирол, который является канцерогеном. Специалисты рекомендуют по возможности отказаться от использования данного вида пластика или сократить его потребление к минимуму.
№ 7 (O или OTHER) – поликарбонат, полиамид и другие виды пластмасс. В данную группу входят пластмассы, не получившие отдельный номер. Из них изготавливаются бутылочки для детей, игрушки, бутылки для воды, упаковки. При частом мытье или нагревании выделяет бисфенол А - вещество, которое ведет к гормональным сбоям в организме человека.

Маркировки приведенные выше, вернее вещества перечисленные в них, являются основными. Они содержатся в каждом пластиковом изделии частично, но в большем количестве. При этом существует еще и множество дополнительных веществ, связующих и технологических, которые также входят в состав пластмассы, но при этом не указаны на маркировке.
Все бы ничего и все не так страшно, но при длительно контакте и использовании всех этих видов химических веществ начинают появляться побочные эффекты. Да, вы можете очень долго пользоваться каким-то видом пластика и не ощущать значимых изменений в организме. Тем не менее, это еще не значит, что их нет на самом деле. Весь «пластмассовый негатив» может дать о себе знать в любой момент. И тогда в последствии вы будете недоумевать, откуда взялись все эти болячки и болезни навалившиеся на вас. Еще страшнее, если токсичные вещества скажутся на здоровье вашего последующего поколения. Поэтому сделайте все возможное, чтобы свести к минимуму контакты с пластиком. Выбросите всю пластмассовую посуду, которая имеется на вашей кухне. Ни в коем случае не оставляйте в хозяйстве пластиковые баночки из-под мороженого или варенья. Особенно внимательно изучайте маркировку детских бутылочек для кормления. Контейнеры, в которых вы берете обед на работу, старайтесь менять как можно чаще. Даже самые качественные коробочки не должны служить вам дольше одного месяца. Это в идеале! Покупая любое изделие из пластика, обязательно понюхайте его. Даже малейший неприятный запах должен заставить вас задуматься о качестве данного товара и о целесообразности его покупки.

Еще раз тоже самое о маркировке пластмассы, но сведенное в одной картинке.

Теперь вы будете знать не только о том как маркируется пластик и какие основные компоненты входят в тот и иной вид пластмассы, но и сможете проанализировать последствия от использования пластиковых изделий.

История пластмассы очень захватывающая. Ниже приведены даты самых важных событий в истории пластика за последние 150 лет.

Обратите внимание на то, как много видов пластика имеют знакомые торговые названия, как например тефлон (Teflon) и пенопласт (Styrofoam).

Что более интересно, так это то, сколько известных видов пластика на самом деле были обнаружены случайно!

Ранние годы пластика

  • 1862 г - открытие паркезина . Паркезин - первый искусственный пластик, который был создан Александром Парксом в Лондоне и представлял собою органический материал, полученный из целлюлозы. После нагревания и предания формы его охлаждали и он сохранял полученную форму;
  • 1863 г открытие нитрата целлюлозы или целлулоида . Материал был открыт Джоном Уэсли Хайатом, когда он пытался найти замену слоновой кости в бильярдных шарах. Целлулоид (Celluloid) стал известен как материал, использующийся в первой гибкой кинопленке для фотографии и кино;
  • 1872 г - открытие поливинилхлорида (ПВХ) . Впервые поливинилхлорид был создан немецким химиком Евгением Бауманом, который так и не запатентовал свое открытие. В 1913 году его соотечественник Фридрих Клатте изобрел новый метод полимеризации винилхлорида с использованием солнечного света. Именно он стал первым изобретателем, который получил патент на поливинилхлорид. Тем не менее, применятся ПВХ стал только после того, как в 1926 году Вальдо Семон усовершенствовала материал.

Период перед Второй мировой войной

  • 1908 г - открытие целлофана ®. В 1900 году швейцарского инженера текстильной промышленности Жака Э. Бранденбергера впервые посетила мысль создать прозрачный, защитный материал для упаковки . В 1908 году он разработал первую машину по производству прозрачных листов регенерированной целлюлозы. Первым клиентом Жака стала американская компания по производству конфет «Whitman’s», которая решила использовать целлофан для обертывания шоколада;
  • 1909 г - открытие бакелита . Бакелит (полиоксибензилметиленгликольангидрид) был одним из первых видов пластика, изготовленных из синтетических компонентов. Он был разработан химиком Лео Бекеландом, уроженцем Бельгии, проживавшим в Нью-Йорке. Бакелит, фенолформальдегидная термореактивная смола, благодаря его низкой электрической проводимости и термостойким свойствам применяется в электрических изоляторах , корпусах для радио и телефонов и в таких разнообразных изделиях, как посуда, ювелирные изделия, трубы и детские игрушки;
  • 1926 г - открытие винила или ПВХ . Винил был изобретен в США Вальтером Симоном, исследователем из компании по производству компонентов для самолетов «B.F. Goodrich». Впервые материал был использован в шарах для гольфа и каблуках. Сегодня винил является вторым самым производимым пластиком в мире и используется во многих изделиях, таких как занавески для душа, плащи, провода, различные приборы, напольная плитка, краски и поверхностные покрытия;
  • 1933 г - открытие поливинилиденхлорида (ПДВХ/PVDC) или сарана (Saran) . Материал был случайно обнаружен Ральфом Вайли в лаборатории американской химической компании «Dow Chemical» и был впервые использован военными для покрытия им истребителей для защиты от соленой морской воды. Производители автомобилей также использовали поливинилиденхлорид в качестве обивочного материала. После Второй мировой войны компания нашла способ избавиться от зеленого цвета и неприятного запаха сарана и, таким образом, его одобрили для изготовления в качестве упаковочного материал для пищевых продуктов . В 1953 году его стали продавать под торговым именем «Saran Wrap»®;
  • 1935 г - открытие полиэтилена низкой плотности (ПЭВД/LPDE) . Этот материал был обнаружен Реджинальдом Гибсоном и Эриком Фосеттом в лаборатории британского промышленного гиганта «Империя химической промышленности» (Imperial Chemical Industries) в двух видах: полиэтилен низкой плотности (ПЭВД /LDPE) и полиэтилен высокой плотности (HDPE/ПЭНД) . Полиэтилен является дешевым, гибкий, прочный и химически стойким материалом. ПЭВД используется для изготовления пленок и упаковочных материалов , в том числе и полиэтиленовых пакетов. ПЭНД чаще всего используется для изготовления контейнеров, сантехники и автомобильных запчастей ;
  • 1936 г - открытие полиметилметакрилата (ПММА) или акрила . К 1936 году американские, британские и немецкие компании производили полиметилметакрилат, более известный как акрил. Хотя акрил в наши дни широко применяется в жидком виде красках и синтетических волокнах, в твердом виде он довольно крепкий и более прозрачный, чем стекло. Торговые марки «Plexiglas» и «Lucite» продают акрил как заменитель стекла ;
  • 1937 г - открытие полиуретана . Полиуретан - органический полимер , который был изобретен химиком Отто Байером из немецкой компании «Фридрих Байер и Компания». Полиуретаны используются в виде эластичного пенопласта в обивке, матрацах, затычек для ушей, химически стойких покрытиях, в специальных клеях, в герметиках и упаковке. В твердой форме полиуретан используется в материалах для термоизоляции зданий , в водонагревателях, при рефрижераторных перевозках, при коммерческих и некоммерческих охлаждениях. Полиуретаны продаются под торговыми названиями «Igamid»® в качестве пластмассовых материалов и «Perlon»® в качестве волокон;
  • 1938 г - первое применение полистирола . Полистирол был впервые обнаружен в 1839 году немецким аптекарем Эдуардом Симоном, но его начали применять только в 1930-х годах, когда ученые из самой крупной химической компании в мире «BASF» разработали коммерческий способ изготовления полистирола. Полистирол является прочным пластиком, который можно изготавливать литьем под давлением, прессованием, экструзией или формованием с раздувом. Материал широко применяется в пластиковых стаканах, картонных коробках для яиц, в упаковках для арахиса, а также в строительных материалах и электроприборах ;
  • 1938 г - открытие политетрафторэтилена (ПТФЭ) или тефлона . Полимер был открыт случайно химиком Ройем Планкеттом, работавшим тогда на американскую химическую компанию «DuPont». ПТФЭ был одним из самых широко применяемых пластиков на войне, который (совершенно секретная информация!) наносили на металлические поверхности в качестве защитного покрытия с низким коэффициентом трения для предотвращения царапин и коррозии. В начале 1960-х годов огромной популярностью стали пользоваться тефлоновые антипригарные сковороды. ПТФЭ был позже использован для синтеза первых мембранных тканей «Gore-Tex». Смешивая тефлон с соединениями фтора, получают материал, который используется для изготовления ложных ракет, чтобы отвлечь ракеты с тепловым наведением;
  • 1938 г - открытие нейлона и неопрена . Оба материала были разработаны Уоллесом Каротерсом, когда его команда исследователей из компании «DuPont» пыталась найти синтетическую замену шелку. Неопрен, синтетический каучук, был впервые изготовлен в 1931 году. Дальнейшие исследования полимеров привели к развитию нейлона, известный также как «чудо-волокно». В 1939 году компания «DuPont» впервые объявила и продемонстрировала нейлон и нейлоновые чулки американской общественности на Всемирной выставке в Нью-Йорке. Также нейлон ранее применялся в изготовлении лески, хирургической нити и зубной щетки;
  • 1942 г - открытие ненасыщенного полиэстера или ПЭТ (еще называют полиэфир, лавсан и дакрон ). Материал был запатентован английскими химиками Джоном Рекс Уинфилдом и Джеймсом Теннант Диксоном и применялся для изготовления синтетических волокон , которые продавали в послевоенное время. Так как полиэстер более плотный по сравнению с другими дешевыми видами пластмассы, его применяют в изготовлении бутылок для газированных и кислых напитков. И так как полиэстер также крепкий и устойчивый к стиранию, он используется для изготовления механических запчастей , пищевых подносах и других предметах. Пленка из полиэстера от компании «Mylar» используются в аудио и видео кассетах.

Фторопласт обладает довольно низким коэффициентом трения, хорошей износостойкостью, стойкостью к воздействиям повышенных температур, благодаря чему успешно используется в различных отраслях.

Важные открытия после Второй мировой войны

  • 1951 г - открытие полиэтилена высокой плотности или полипропилена . Два американских химика Пол Хоган и Роберт Бэнкс, работающие в нефтяной компании «Phillips Petroleum» в Нидерландах, нашли способ производства кристаллического полипропилена. Полипропилен похож на своего «родственника» полиэтилена и его стоимость относительно низкая, но в отличие от полиэтилена, он гораздо более крепкий и используется практически повсюду, начиная с изготовления пластиковых бутылок и заканчивая коврами и пластиковой мебелью. Применяют его очень активно и в автомобильной промышленности;
  • 1954 г - открытие пенополистирола (Styrofoam) или пенопласта . Английское обозначение пенополистирола «Styrofoam» а качестве торгового названия позаимствовала химическая компания «The Dow Chemical Company». Пенопласт был изобретен случайно ученым Рэем Макинтайром, который пытался изготовить гибкий электрический изолятор, комбинируя стирол с изобутиленом под давлением, что являлось довольно взрывоопасным соединением. В результате его эксперимента был открыт пенополистирол с пузырьками, который в 30 раз легче обычного полистирола.

Оглянитесь вокруг комнаты, где Вы находитесь прямо сейчас, и подсчитайте, сколько предметов полностью или частично состоят из пластика. Вы сразу увидите, насколько пластик вездесущ. Он действительно везде!

Видео: "Пластик - уникальный синтетический материал"

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»