Магнитно индуктивный датчик. Принцип действия и основные параметры индуктивных датчиков положения. Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Различные промышленные устройства предполагают использование всевозможных датчиков, которые отличаются своими особенностями и принципами работы. Одним из вариантов, получивших достаточно широкое распространение, является индуктивный датчик, который активно применяется в низовом оборудовании у различных систем, обеспечивающих автоматизированное управление линиями производства. Встретить такие датчики можно в устройствах, которые отвечают за работу линий пищевой и текстильной промышленности, предприятий машиностроения и многих других.

Что представляет собой датчик?

Этот датчик по своим особенностям работы относится к бесконтактному оборудованию, то есть, ему не требуется наличие физического контакта с объектом, чтобы определить его местоположение в пространстве. Индуктивный датчик обычно применяется в тех случаях, когда необходимо провести работу с металлическими объектами и предметами.

На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств - всевозможные автоматизированные линии и системы. У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами. У такой работы есть свои особенности и принципы, которые играют важную роль.

Как действует датчик?

Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

  1. При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
  2. Результат всех этих преобразований - получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
  3. Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.

Конструкция устройства

Индуктивный датчик положения имеет своеобразное устройство и состоит из нескольких важных узлов, которые обеспечивают полноценную работу этого агрегата.

  1. Важной деталью является генератор, именно он создает электромагнитное поле, которое помогает анализировать металлические предметы и определять их положение. Без этого поля работа была бы невозможной.
  2. Также в работе используется такой специальный элемент, как триггер Шмидта - в его задачу входит преобразование сигнала, чтобы датчики могли взаимодействовать с другими элементами в системе и передавать информацию дальше.
  3. Может использоваться усилитель - он нужен, чтобы получаемый сигнал достиг необходимого уровня для дальнейшей передачи.
  4. В работе датчика применяются индикаторы на светодиодах, они помогают контролировать работу устройства, сигнализируя о том, что оно включилось, а также лампочки могут загораться при выполнении различных настроек системы.
  5. Такое приспособление как компаунд защищает датчик от попадания внутрь воды и всяческих мелких частиц. Поскольку посторонние субстанции могут негативно сказаться на работе прибора и даже привести к его поломке, качественная защита является важным моментом.
  6. Корпус - в нем помещаются все перечисленные внутренние элементы, которые собираются в единое целое. Сам корпус монтируется в нужном месте при помощи специальных креплений, позволяющих расположить его так, как это требуется для правильной и эффективной работы на линии. Кроме того, оболочка защищает детали от механических воздействий и повреждений, которые могут быть получены таким путем. Для этого корпуса датчиков изготавливают из латуни, либо полиамида - они являются достаточно надежными материалами.

Что следует знать о работе датчика?

Индуктивный датчик положения - это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:

  1. Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
  2. Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
  3. Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
  4. Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.

Достоинства и недостатки

Как и различные другие приборы, эти обладают своими плюсами и минусами, которые становятся заметными в эксплуатации. Датчики стали довольно популярными благодаря тому, что у них есть несколько важных преимуществ.

  1. Конструкция этих агрегатов достаточно простая, она не содержит каких-то сложных элементов, требующих особой настройки. За счет этого датчики обладают высокой прочностью и надежностью, нечасто ломаются и могут постоянно использоваться на производстве. Также удобно, что у них не имеется скользящих контактов.
  2. Особенности устройства позволяют подключать приборы к промышленной системе напряжения без всяких проблем.
  3. Обладают хорошей чувствительностью, поэтому их можно использовать при работе с различными металлическими объектами.

К минусам можно отнести то, что при работе датчики могут выдавать погрешности из-за наличия различных факторов. На них может влиять температура, а также воздействие других полей похожего типа. Поэтому для качественной работы нужно обеспечить подходящие условия, которые не мешали бы датчикам правильно функционировать.

Индукционные датчики

Индукционные датчики предназначены для преобразования скорости линейных и угловых перемещений в ЭДС. Они относятся к датчикам генераторного типа. Принцип действия индукционных датчиков основан на законе электромагнитной индукции. Выходным сигналом индукционных датчиков является ЭДС, которая пропорциональна скорости изменения магнитного потока, пронизывающего витки катушки. Это изменение происходит за счет перемещения катушки в постоянном магнитном поле или за счет вращения ферромагнитного индуктора относительно неподвижной катушки.

Основным отличием индукционных датчиков от индуктивных является то, что в них используется постоянное магнитное поле, а не переменное (питание индуктивных датчиков осуществляется от сети переменного тока). Постоянное магнитное поле в индукционных датчиках создается двумя способами: постоянными магнитами или катушкой, обтекаемой постоянным током.

На рис. 6.19, а показана схема датчика с обмоткой W 2 , размещенной в воздушном зазоре, в котором постоянный магнитный поток Ф создается катушкой W 1 , включенной на постоянное напряжение. При перемещении катушки в магнитном поле в ней индуцируется ЭДС, пропорциональная скорости перемещения:

где k - коэффициент пропорциональности, зависящий от числа витков W 2 и конструктивных параметров датчика.

На рис. 6.19, б показан датчик, в котором постоянный магнитный поток создается с помощью постоянного магнита с полюсными наконечниками. ЭДС, индуцируемая во вращающейся катушке, пропорциональна скорости вращения Ω:

В обоих этих датчиках катушки подвижны, поэтому для отвода от них выходного сигнала (ЭДС) необходимы гибкие токоподводы или контактные кольца со щетками.

Индукционный датчик может быть выполнен и другой конструкции: с неподвижной катушкой и вращающимся постоянным магнитом (рис. 6.19, в). Надежность при этом повышается за счет отсутствия скользящего контакта. Возможен и другой способ повышения надежности датчика по схеме рис. 6.19, б: и катушка, и постоянный магнит неподвижны, а в зазоре между ними вращается ферромагнитное кольцо с вырезами (рис. 6.19, г) или иной элемент, имеющий существенно разную магнитную проводимость по взаимно перпендикулярным осям. При вращении изменяется поток, пронизывающий плоскость катушки.

В датчиках (рис. 6.19, б, в, г) в качестве выходного сигнала можно использовать частоту ЭДС. Принцип их действия по существу такой же, как у синхронных генераторов. Для измерения частоты вращения используются и специальные электрические машины малой мощности - тахогенераторы.

Тахогенератор постоянного тока имеет обмотку возбуждения, создающую при питании постоянным током магнитный поток Ф. При вращении якоря в нем создается ЭДС, пропорциональная частоте вращения п: Е= кФп, где k - постоянная, определяемая конструкцией.

Частота вращения п обычно выражается в 1/мин (количество оборотов в минуту) и связана со скоростью вращения выражением:

С помощью коллектора и щеток выходной сигнал подается на нагрузку в виде выпрямленного напряжения.

Тахогенератор переменного тока имеет на статоре две обмотки, сдвинутые одна относительно другой на 90 град. Одна обмотка включается в сеть переменного тока. При вращении ротора, выполненного в виде тонкостенного электропроводящего цилиндра, в другой обмотке наводится переменная ЭДС, которая пропорциональна частоте вращения п. Для повышения температурной стабильности в качестве материала полого ротора используется константан.

Тахогенераторы обладают высокой чувствительностью и мощностью выходного сигнала. Общим недостатком всех генераторных датчиков является зависимость выходного сигнала от сопротивления нагрузки.

что такое Датчик индуктивный? Индуктивные датчики широко используются для измерения положения и скорости, особенно в неблагоприятных условиях эксплуатации.Однако терминология и методы работы индуктивных датчиков могут вводить многих инженеров в заблуждение. В этой статье Марк Ховард из компании Zettlex объясняет принципы работы и описывает типы существующих датчиков, а также перечисляет их преимущества и недостатки.

Индуктивные датчики положения и скорости бывают самых разнообразных форм, размеров и конструкций. Можно сказать, что все индуктивные датчики работают по принципу работы трансформатора и физическое явление, основанное на переменных электрических токах. Это явление впервые наблюдал Майкл Фарадей в 1830-х годах, когда обнаружил, что первый токопроводящий проводник может «индуцировать» ток во втором проводнике. Открытия Фарадея позволили создать электродвигатели, динамометры и, конечно же, индуктивные датчики положения и скорости. В число таких датчиков входят простые бесконтактные реле, датчики переменной индуктивности и сопротивления, синхронизаторы, резольверы, ротационные датчики перемещения и линейно-регулируемые дифференциальные трансформаторы (RVDT и LVDT).

Различные типы индуктивных датчиков

В простом бесконтактном датчике (иногда называемом бесконтактным реле) при подключении устройства к источнику электропитания в его катушке (цепи, контуре или обмотке) протекает переменный ток. При приближении к катушке проводящего или магнитопроницаемого материала, например стального диска, импеданс катушки изменяется. Превышение порогового значения служит сигналом о наличии объекта. Бесконтактные датчики обычно используются для определения наличия металла, а их выходной сигнал часто используется для управления переключателем. Эти датчики широко используются во многих областях промышленности, где проблематично использовать электрические контакты обычных переключателей, например там, где много грязи или воды. Даже в обычной автомойке используется множество индуктивных бесконтактных датчиков.

Индуктивные датчики переменной индуктивности и сопротивления обычно генерируют электрический сигнал, пропорциональный смещению проводящего или магнитопроницаемого объекта (обычно стального стержня) относительно катушки. Как и в случае с бесконтактными датчиками, импеданс катушки изменяется пропорционально смещению объекта относительно катушки, в которой протекает переменный ток. Такие устройства обычно используются для измерения смещения поршней в цилиндрах, например в пневматических или гидравлических системах. Можно сделать так, чтобы поршень проходил по внешнему диаметру катушки.

Сельсины измеряют индуктивную связь между катушками, когда те движутся относительно друг друга. Сельсины, которые обычно вращаются, необходимо напрямую подключать как к движущейся, так и к неподвижной деталям (обычно называемым ротором и статором). Они обеспечивают чрезвычайно высокую точность измерений и используются в промышленной метрологии, радиолокационных антеннах и телескопах. Сельсины, как известно, сегодня дорогие и используются все реже, так как на смену им приходят (бесщеточные) резольверы. Последние представляют собой еще один вид индуктивных датчиков, но подключаются только к обмоткам статора.

LVDT, RVDT и резольверы измеряют изменение индуктивной связи между катушками, которые обычно называют первичной и вторичной обмотками. Первичная обмотка передает энергию во вторичные, но количество энергии в каждой из вторичных обмоток изменяется пропорционально относительному смещению магнитопроницаемого материала. В LVDT через отверстие обмоток обычно проходит металлический стержень. Как правило, ротор или полюсная деталь вращаются в RVDT или резольвере относительно обмоток, расположенных вокруг ротора. Обычно LVDT и RVDT используются в гидравлических сервоприводах элеронов аэрокосмических аппаратов, а также элементах управления двигателем и топливной системой. Резольверы, в свою очередь, применяются для коммутации бесщеточных электродвигателей.

Существенным преимуществом индуктивных датчиков является то, что связанные схемы обработки сигналов не нужно располагать в непосредственной близости от чувствительных катушек. Это позволяет размещать чувствительные катушки в неблагоприятных условиях эксплуатации, где другие методы измерения (например, магнитные или оптические) невозможны, поскольку для них относительно чувствительная кремниевая электроника должна находиться в точке измерения.

Применение

Индуктивные датчики известны своей надежностью при работе в сложных условиях. Следовательно, часто именно их сразу выбирают тогда, когда необходимо обеспечить безопасность или высокую надежность работы. Такие требования широко распространены в военной, аэрокосмической, железнодорожной и тяжелой промышленности.

Причина солидной репутации датчиков связана с фундаментальными законами физики и принципами работы, которые, как правило, не зависят от:

  • подвижных электрических контактов;
  • температуры;
  • влажности, воды и наличия конденсата;
  • посторонних предметов, например грязи, жира, твердых частиц и песка.

Преимущества и недостатки

Особенности конструкции основных элементов управления (катушек обмотки и металлических деталей) обеспечивают чрезвычайную надежность большинства индуктивных датчиков. Учитывая их солидную репутацию, возникает очевидный вопрос: «Почему индуктивные датчики не используются чаще?» Причина в том, что их физическая прочность является одновременно их преимуществом и недостатком. Индуктивные датчики отличаются точностью, надежностью и стабильностью, но при этом являются большими, громоздкими и тяжелыми. Большой расход материала и необходимость тщательной намотки катушек обуславливают дороговизну производства датчиков, особенно высокоточных приборов, требующий прецизионной намотки. Помимо простых бесконтактных датчиков, более сложные индуктивные датчики стоят слишком дорого для использования в широко распространенных коммерческих или промышленных сферах применения.

Другая причина их относительно редкого использования заключается в сложности составления инженерами-конструкторами технических условий. Это связано с тем, что схемы генерации переменного тока и обработки сигналов для каждого датчика необходимо рассчитывать и приобретать отдельно. Для этого обычно требуются глубокие навыки и знания в области аналоговой электроники. Поскольку молодые инженеры стремятся сосредоточиться на цифровой электронике, они рассматривают изучение таких дисциплин как приобретение ненужной квалификации, которую следует избегать.

Индуктивные датчики следующего поколения

Тем не менее, в последние годы на рынке появилось новое поколение индуктивных датчиков , которые пользуются все большей популярностью не только в традиционных сферах, но и в промышленном, автомобильном, медицинском, коммунальном, научном и нефтегазовом секторах. В этих индуктивных датчиках нового поколения используются те же фундаментальные законы физики, что и традиционных устройствах, но в них применяются печатные платы и современная цифровая электроника, а не громоздкие трансформаторные конструкции и аналоговая электроника. Такой элегантный подход также позволяет использовать эти технологии в 2D и 3D-датчиках, линейных устройствах с укороченным (< 1 мм) шагом перемещения, устройствах измерения криволинейной геометрии и высокопрецизионных энкодерах угла поворота.

Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

[ Скрыть ]

Характеристика индуктивных преобразователей

Индуктивный датчик или представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Видео «Как подключить индукционный регулятор?»

Наглядная инструкция на примере подключения регулятора в мотоцикле Юпитер приведена в ролике ниже (автор — Вадим Карамов).

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, и другие датчики применяются очень широко.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) - понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет – сигнал на контроллер или рвёт . Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами .

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – .

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам .

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный . Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм . Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков , на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – . Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»