Преобразователи сварочные с номинальным сварочным током. Преобразователь для сварки - основы использования. Сварочные выпрямители с жесткими внешними характеристиками

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Оглавление книги Следующая страница>>

§ 10. Устройство и обслуживание сварочных преобразователей. .

Для питания электрической дуги постоянным током выпускаются передвижные и стационарные сварочные преобразователи. На рис. 17 показано устройство однопостового сварочного преобразователя ПСО-500, выпускаемого серийно нашей промышленностью.

Рис. 17. Схема сварочного преобразователя ПСО-500 :

1 - корпус, 2 - электродвигатель, 3 - вентилятор, 4 - катушка полюсов, 5 - якорь генератора, 6 - коллектор, 7 - токосъемник, 8 - маховичок для регулирования тока, 9 - сварочные зажимы, 10 - амперметр, 11 - пакетный выключатель, 12 - коробка пускорегулирующей и контрольной аппаратуры преобразователя

Однопостовой сварочный преобразователь ПСО-500 состоит из двух машин: из приводного электродвигателя 2 и сварочного генератора ГСО-500 постоянного тока, расположенных в общем корпусе 1. Якорь 5 генератора и ротор двигателя расположены на общем валу, подшипники которого установлены в крышках корпуса преобразователя. На валу между электродвигателем и генератором находится вентилятор 3, предназначенный для охлаждения агрегата во время его работы. Якорь генератора набран из тонких пластин электротехнической стали толщиной до 1 мм и снабжен продольными пазами, в которых уложены изолированные витки обмотки якоря. Концы обмотки якоря припаяны к соответствующим пластинам коллектора 6. На полюсах магнитов насажены катушки 4 с обмотками из изолированной проволоки, которые включаются в электрическую цепь генератора.

Генератор работает по принципу электромагнитной индукции. При вращении якоря 5 его обмотка пересекает магнитные силовые линии магнитов, в результате чего в обмотках якоря наводится переменный электрический ток, который с помощью коллектора 6 преобразуется в постоянный; с щеток токосъемника 7 при нагрузке в сварочной цепи ток течет с коллектора к зажимам 9.

Пускорегулирующая и контрольная аппаратура преобразователя смонтирована на корпусе 1 в общей коробке 12.

Преобразователь включается пакетным включателем 11. Величина тока возбуждения и режим работы сварочного генератора плавно регулируются реостатом в цепи независимого возбуждения маховичком 8. С помощью перемычки, соединяющей дополнительный зажим с одним из положительных выводов от последовательной обмотки, можно устанавливать сварочный ток до 300 и 500 А. Работа генератора на токах, превышающих верхние пределы (300 и 500 А), не рекомендуется, так как возможен перегрев машины и нарушение системы коммутации. Величина сварочного тока определяется амперметром 10, шунт которого включен в цепь якоря генератора, смонтированного внутри корпуса преобразователя.

Обмотки генератора ГСО-500 выполняются из меди или алюминия. Алюминиевые шины армируют медными пластинками. Для защиты от радиопомех, возникающих при работе генератора, применен емкостный фильтр из двух конденсаторов.

Перед пуском преобразователя в работу необходимо проверить заземление корпуса; состояние щеток коллектора; надежность контактов во внутренней и внешней цепях; штурвал реостата повернуть против часовой стрелки до упора; проверить, не касаются ли концы сварочных проводов друг друга; установить перемычку на доске зажимов соответственно требуемой величине сварочного тока (300 или 500 А).

Пуск преобразователя осуществляется включением двигателя в сеть (пакетным выключателем 11). После подсоединения к сети необходимо проверить направление вращения генератора (если смотреть со стороны коллектора, ротор должен вращаться против часовой стрелки) и в случае необходимости поменять местами провода в месте их подключения к питающей сети.

§ 105. Сварочные преобразователи


Многопостовые преобразователи. Они предназначены для одновременного питания нескольких сварочных постов. В промышленности используются многопостовые преобразователи ПСМ-1000, ПСМ-500. Преобразователь ПСМ-1000 имеет однокорпусное исполнение стационарного типа и состоит из трехфазного, асинхронного двигателя АВ-91-4 с короткозамкнутым ротором и шестиполюсного генератора СГ-1000 со смешанным возбуждением. Кроме шунтовой обмотки. на главных полюсах размещена последовательная обмотка для поддержания постоянного напряжения при увеличении нагрузки. Генератор имеет жесткую характеристику, напряжение регулируется реостатом, включенным в цепь параллельной обмотки возбуждения.
Падающая внешняя характеристика, необходимая для ручной дуговой сварки, создается самостоятельно на каждом сварочном посту балластным реостатом типа РБ (этот реостат позволяет ступенчато изменять величину сварочного тока). Схема включения преобразователя ПСМ-1000 и балластных реостатов показана на рис. 105.
Основным недостатком многопостовых преобразователей является низкий кпд сварочных постов. К преимуществам многопостовых преобразователей относятся: простота обслуживания, низкая стоимость оборудования, небольшая площадь для размещения оборудования и высокая надежность в эксплуатации.

Рис. 105. Схема присоединения сварочных постов через балластные реостаты к сварочному преобразователю ПСМ-1000:
А - амперметр, V - вольтметр, Ш - шунт, РР - реостат регулировочный, РБ - реостат балластный


Преобразователи для сварки в защитных газах. Для автоматической и механизированной сварки в защитных газах необходимы сварочные преобразователи, обеспечивающие жесткие или возрастающие внешние характеристики. Для этой цели промышленность выпускает преобразователи ПСГ-350, ПСГ-500, а также универсальные преобразователи ПСУ-300 и ПСУ-500. Универсальные преобразователи типа ПСУ предназначены для ручной дуговой сварки, наплавка и резки металлов постоянным током, поскольку обеспечивают получение крутопадающих внешних характеристик. На рис. 106 показаны внешние характеристики преобразователей ПСУ-300.


Рис. 106. Внешние характеристики преобразователя ПСУ-300:
1 - крутопадающие. 2 - жесткие


Преобразователь ПСГ-500 имеет однокорпусное исполнение. Генератор преобразователя имеет на основных полюсах две обмотки возбуждения: одну независимую и другую последовательную, подмагничивающую. Электрическая схема преобразователя ПСГ-500 показана на рис. 107. Обмотка независимого возбуждения питается от сети переменного тока через феррорезонансный стабилизатор напряжения и блок селеновых выпрямителей ВС, обеспечивающих постоянное, не зависящее от колебаний напряжение сети, напряжение возбуждения. Напряжение на зажимах генератора плавно регулируется в пределах 15-40 В реостатом Р, включенным последовательно в цепь обмотки возбуждения. Якорь генератора имеет малую индуктивность, благодаря чему при коротком замыкании электрода с изделием быстро возрастает сварочный ток, пределы регулирования величины тока 60-500 А.
Основные технические данные преобразователей типа ПСГ приведены в табл. 31.

31. Технические данные преобразователей ПСГ-356, ПСГ-500



Рис. 107. Электрическая схема преобразователя ПСГ-500:
Тр - трансформатор стабилизирующий, Г - генератор сварочный, ДЗГ - доска зажимов генератора, Д - двигатель, ДЗД - доска зажимов двигателя, ПК - пакетный выключатель, ВС - выпрямитель селеновый, Р - реостат цепи возбуждения, ДПД - доска переключения двигателя, V - вольтметр, К з - конденсатор защитный, К с - конденсатор стабилизирующий


Универсальные сварочные преобразователи. Для ручной дуговой сварки и сварки на автоматах, снабженных авторегуляторами напряжения, автоматически воздействующими на скорость подачи электродной проволоки, требуются источники питания с падающими внешними характеристиками. Для питания автоматов и полуавтоматов с постоянной скоростью подачи электродной проволоки, в том числе для сварки в углекислом газе и порошковой проволокой СП-2, необходимы генераторы с жесткими внешними характеристиками. Поскольку на заводах и монтажных площадках механизированные методы сварки используются в сочетании с ручной дуговой сваркой, требуются универсальные источники, обеспечивающие как падающие, так и жесткие внешние характеристики. Для этой цели разработана конструкция универсального сварочного преобразователя ПСУ-300, генератор которого имеет одну обмотку возбуждения. Внешние характеристики в этом генераторе создаются с помощью триода ПТ, включенного в цепь обмотки возбуждения ОВ, и обратной связи по току нагрузки (рис. 108). Он является четырех полюсным генератором постоянного тока нормального исполнения, его обмотка возбуждения ОВ размещена на четырех главных полюсах и питается от устройства управления, размещенного на корпусе преобразователя.


Рис. 108. Упрощенная электрическая схема универсального преобразователя ПСУ-300


Сварочная цепь и цепь обмотки возбуждения связаны между собой стабилизирующим трансформатором Тр, предназначенным для обеспечения динамических свойств генератора.
Величину сварочного тока регулируют реостатом – регулятором ДП, установленным на передней стенке управления. По мере роста сварочного тока сопротивление триода возрастает, ток возбуждения уменьшается, уменьшается и эдс генератора, т. е. характеристика получается падающей. При переключении цепей управления внешняя характеристика становится жесткой. Основные технические данные универсальных преобразователей даны в табл. 32.

32. Основные технические данные универсальных преобразователей


Обслуживание сварочных преобразователей. При эксплуатации преобразователей на открытых строительных и монтажных площадках необходимо защищать их от атмосферных осадков, для чего следует делать навесы или специальные будки. Перед пуском преобразователей, длительное время находившихся на незащищенных от атмосферных осадков площадках, нужно проверить сопротивление изоляции обмоток.
Особенно тщательного ухода требуют коллектор генератора, щетки и подшипники. Коллектор нужно содержать в чистоте и периодически очищать от пыли чистой тряпкой, смоченной в бензине. При нормальном состоянии коллектор не должен иметь следов нагара. При появлении нагара необходимо выяснить причину его возникновения и устранить ее, а коллектор прошлифовать. Поврежденные или изношенные щетки следует заменить новыми и притереть их к коллектору, а образующуюся пыль удалить с помощью струи сжатого воздуха, после чего генератор включить на холостую работу для окончательной прошлифовки щеток.
Смазку в шарикоподшипниках рекомендуется заменять 1-2 раза в год. После удаления смазки подшипники тщательно промыть бензином, протереть, просушить и снова заполнить смазкой. Необходимо следить за тем, чтобы в подшипники не попадала пыль и песок. При работе шум шарикоподшипников должен быть глухим, ровным, без резких звуков.
При работе преобразователя необходимо следить за его температурой, которая не должна превышать 90°С. Нужно избегать перегрузок генератора преобразователя, так как от этого сокращается срок его эксплуатации.

Сварочный электрический преобразователь представляет собой совокупность генератора постоянного тока и электрического двигателя постоянного тока. В процессе работы происходит преобразование сетевой электроэнергии переменного тока в механическую энергию электрического двигателя. В результате вращения генераторного вала она преобразуется в электрическую энергию постоянного тока, используемого для сварки. Преобразователь имеет относительно небольшой КПД, а из-за присутствия вращающихся элементов в сравнении с выпрямителем он считается менее надежным. Но для строительно-монтажных работ применение генераторов имеет свои преимущества. Например, если сравнивать с прочими источниками, они менее чувствительны к сетевым колебаниям напряжения.

Устройство сварочного электрического преобразователя: электрический приводной двигатель, генератор, вырабатывающий сварочный ток. Из-за того, что конструкция включает вращающиеся элементы, надежность и КПД устройства ниже, чем у стандартных трансформаторов, выпрямителей.

Но преобразователи при этом имеют свое преимущество – вырабатывают сварочный ток, практически не зависящий от сетевых перепадов напряжения. Их целесообразнее всего использовать в случае повышенных требований к качеству сварочных работ.

Рабочие узлы преобразователя сварочного оборудования, пускорегулирующая аппаратура в том числе, размещены в одном корпусе. Отличают передвижные агрегаты и преобразователи (для осуществления строительно-монтажных работ), стационарные посты (используются на производствах). Они имеют немного разные характеристики.

Принцип работы

Принцип работы механизма ПСО-500 предоставляет возможность вырабатывать постоянный, переменный ток. Достаточно часто в производственных цехах используются именно преобразователи марки ПСО-500, так как они характеризуются высокой технической производительностью, надежностью.

Особенности установки

  • В основе устройства используется генератор марки ГСО-500, назначение которого – вырабатывать постоянный электрический ток.
  • Два рабочих режима: до 300 А и 500 А.
  • Ротор электромотора, якорь генератора оборудованы на одном валу. Между ними размещена крыльчатка вентилятора, обеспечивающая эффективное охлаждение механизма.
  • Пакетник, выполняющий функцию запуска устройства, и реостат, регулирующий рабочий процесс, размещены в едином блоке, закрепленном на корпусе установки.
  • Для регулировки сварочного тока используется реостат, который подключен к цепи обмотки возбуждения.

Преобразователь сварочный модели ПСО-500 смонтирован на колесном шасси, имеет небольшой вес. Благодаря этим характеристикам установка является достаточно мобильной и может использоваться на строительных площадках.

Техника безопасности

При использовании преобразователей нужно соблюдать требования по технике безопасности для электроустановок:

  • корпус обязательно должен быть заземлен; работы, связанные с подключением агрегата к электросети, должен производить исключительно профессиональный электрик;
  • учитывая, что оборудование подключается к источнику питания с напряжением 220/380 В, двигательная клеммная коробка должна быть закрыта и надежно изолирована.

Несмотря на то что сварочные преобразователи расходуют больше электрической энергии из-за низкого КПД, наличия механических связей, сварочный ток всегда стабильный независимо от перепадов сетевого напряжения. Это предоставляет возможность выполнять сварные швы высокого качества.

Также необходимо соблюдать в процессе работы со сварочным преобразователем следующие требования:

  • обязательное заземление корпуса установки;
  • на клеммах двигателя напряжение в 380/220 В считается опасным, они обязательно должны быть надежно изолированы, прикрыты. Соединительные работы осуществляются опытным электриком, у которого есть допуск к работам с высоким напряжением;
  • на клеммах генератора при нагрузке напряжение составляет 40 В, на холостом ходу напряжение генератора марки ГСО-500 может увеличиваться до 85 В. В процессе эксплуатации оборудования в закрытых помещениях с повышенной влажностью, при наличии пыли, на открытом воздухе, при повышенных температурах окружающей среды (более 30 градусов), токопроводящем половом основании, выполнении сварки материалов на конструкциях, сделанных из металла, напряжение более 12 В представляет опасность для человеческой жизни.

ГЛАВА XI

ИСТОЧНИКИ ПИТАНИЯ СВАРОЧНОЙ ДУГИ ПОСТОЯННОГО ТОКА

§ 49. ОДНОПОСТОВЫЕ И МНОГОПОСТОВЫЕ ИСТОЧНИКИ ПИТАНИЯ

Источники питания постоянного тока подразделяются на две основные группы: сварочные преобразователи вращающегося типа (сварочные генераторы) и сварочные выпрямительные установки (сварочные выпрямители).
Генераторы постоянного тока подразделяются: по количеству питаемых постов - на однопостовые и многопостовые; по способу установки - на стационарные и передвижные; по роду привода - на генераторы с электрическим приводом и на генераторы с двигателями внутреннего сгорания; по конструктивному выполнению - на однокорпусные и двухкорпусные.
По форме внешних характеристик сварочные генераторы могут быть с падающими внешними характеристиками; с жесткими и пологопадающими характеристиками; комбинированного типа (универсальные генераторы, при переключении обмоток или регулирующих устройств которых можно получить падающие, жесткие или пологопадающие характеристики).
Наибольшее распространение получили генераторы с падающими внешними характеристиками, работающие по следующим трем основным схемам:
генераторы с независимым возбуждением и размагничивающей последовательной обмоткой;
генераторы с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;
генераторы с расщепленными полюсами.
Ни один из трех видов генераторов с падающими внешними характеристиками не выделяется существенными преимуществами как по технологическим, так и по энергетическим и весовым показателям.
Генераторы с независимым возбуждением и размагничивающей последовательной обмоткой (рис. 71, а). Генератор Г имеет две обмотки возбуждения: обмотку независимого возбуждения НО , питаемую от отдельного источника через сеть переменного тока и полупроводниковый выпрямитель, и последовательную размагничивающую обмотку РО , включенную последовательно с обмоткой якоря. Ток в цепи независимого возбуждения регулируется реостатом Р . Магнитный ток Ф н, создаваемый обмоткой независимого возбуждения, противоположен по своему направлению магнитному потоку Ф p размагничивающей обмотки. При холостом ходе, т. е. когда сварочная цепь разомкнута, э. д. с. генератора определяется по формуле

E = C · Ф н

где Е - э.д. с. (электродвижущая сила);
С - постоянная составляющая генератора;
Ф н - магнитный поток обмотки независимого возбуждения.

При замкнутой цепи сварочный ток проходит через последовательную обмотку РО , создавая магнитный поток Ф p , противоположно направленный магнитному потоку Ф н. Результирующий поток Ф рез представляет разность потоков:

Ф рез = Ф н - Ф p .

С увеличением тока в сварочной цепи Ф p будет увеличиваться, а Ф рез, э. д. с. и напряжение на зажимах генератора - падать, создавая падающую внешнюю характеристику генератора.
Сварочный гок в генераторах этой системы регулируется реостатами Р и секционированием последовательной обмотки, т.е. изменения числа ампер-витков.
Отечественная промышленность выпускает сварочные преобразователи ПСО-120, ПСО-500, ПСО-800, АСО-2000, укомплектованные генераторами с независимым возбуждением и последовательной размагничивающей обмоткой ГСО-120, ГСО-500, ГСО-800 и СГ-1000-II.
Основные технические данные преобразователей с генераторами, работающими по данной схеме, приведены в табл. 27.

Таблица 27

Технические характеристики преобразователей ПСО-120, ПСО-800, ПСО-500, АСО-2000


Для получения жесткой внешней характеристики последовательные размагничивающие обмотки переключаются так, чтобы они действовали согласованно с обмоткой независимого возбуждения. По такой схеме работают сварочные преобразователи ПСГ-350, ПСГ-500 с генераторами ГСГ-350 и ГСГ-500 соответственно.
Основные технические данные преобразователей с генераторами, работающими по данной схеме, приведены в табл. 28.

Таблица 28

Технические характеристики преобразователей ПСГ-350, ПСГ-500


Генераторы с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения (рис. 71,6). Отличительной особенностью генераторов такой схемы является использование принципа самовозбуждения. Для этого имеются две обмотки возбуждения (НО и РО ) - в результате э. д. с. генератора индуктируется магнитным потоком обмотки, присоединенной к щеткам генератора а и с . Напряжение между этими щетками почти постоянно по величине, поэтому магнитный поток Ф н практически не меняется. Обмотка генератора НО называется обмоткой независимого возбуждения.
При нагрузке (при сварке) сварочный ток проходит через обмотку РО , включенную так, что ее магнитный поток Ф p направлен против магнитного потока Ф н обмотки независимого возбуждения. При увеличении тока в сварочной цепи возрастает размагничивающее действие последовательной обмотки РО , а напряжение генератора становится меньше, так как э.д. с., индуктируемая в обмотке якоря генератора, зависит от результирующего магнитного потока генератора.
При коротком замыкании магнитные потоки Ф p и Ф н равны, напряжение на зажимах генератора близко к нулю.
Падающая внешняя характеристика получается вследствие размагничивающего действия обмотки РО . Плавное регулирование сварочного тока в генераторах этой системы осуществляется реостатами Р . Возможно также добавочное регулирование сварочного тока переключением витков сериесной обмотки возбуждения.
Схема допускает четырехполюсное исполнение генераторов, что позволяет упростить конструкцию и соответственно уменьшить вес.
По данной схеме работают наиболее распространенные преобразователи ПСО-ЗОО, ПСО-500, ПС-500 с генераторами ГСО-ЗОО, ГСO-500, ГС-500 и некоторые другие сварочные агрегаты. Основные технические данные преобразователей с генераторами, работающими по этой схеме, даны в табл. 29.

Таблица 29

Технические характеристики преобразователей ПСО-300, ПСО-500, ПС-500-II

Генераторы с расщепленными полюсами (рис. 72). У генераторов этой группы падающие внешние характеристики получаются в результате размагничивающего действия магнитного потока обмотки якоря (реакции якоря). Генератор Г имеет четыре основных магнитных полюса N 1 , N 2 , S 1 , S 2 и три группы щеток a , b , c на коллекторе. В отличие от рассмотренных генераторов, у которых северные и южные магнитные полюсы чередуются между собой, у генераторов этой группы одноименные полюсы расположены рядом.


Каждую пару одноименных полюсов считаем одним, но расщепленным на два. Генераторы с расщепленными полюсами фактически являются двухполюсными. Вертикально расположенные полюсы называются поперечными , а горизонтальные - главными . Главные полюсы имеют вырезы для уменьшения площади поперечного сечения и всегда работают при полном магнитном насыщении, т.е. магнитный поток, создаваемый этими полюсами, при всех нагрузках остается неизменным. Магнитный поток полюсов, создаваемый обмотками НГ и НП условно можно разделить на два потока Ф г и Ф п, замыкающиеся через определенные пары полюсов. Один магнитный поток имеет направление от северного полюса N 1 к южному S 1 и второй - от северного полюса N 2 к южному S 2 . Э. д. с. якоря зависит от интенсивности магнитных потоков Ф п и Ф г. Чем интенсивнее магнитный поток, пересекаемый проводниками якоря, тем больше э. д. с.
При возбуждении электрической дуги через обмотку якоря проходит ток, который создает магнитный поток обмотки якоря (показан штриховыми линиями). Этот магнитный поток зависит от тока: чем меньше величина тока в обмотке якоря, тем меньше магнитный поток якоря. Магнитный поток якоря, который совпадает по направлению с магнитным потоком N 2 , S 2 главных полюсов (направления магнитных потоков полюсов показаны стрелками), увеличивает его; направленный же в противоположную сторону магнитный поток Ф п - уменьшает его.
Главные полюсы всегда работают при полном магнитном насыщении. Следовательно, магнитный поток якоря практически не может увеличить магнитный поток Ф г, он может только уменьшить магнитный поток поперечных полюсов Ф п. В момент короткого замыкания в сварочной цепи магнитный поток якоря имеет наибольшую величину и уменьшает результирующий магнитный поток до нуля, следовательно, э. д. с. генератора также равна нулю.
При отсутствии нагрузки в сварочной цепи (при холостом ходе) в обмотке якоря тока нет, магнитный поток якоря также отсутствует, поэтому поток Ф п и, следовательно, результирующий магнитный поток имеют наибольшую величину, а генератор - наибольшее напряжение. Таким образом, вследствие размагничивающего действия магнитного потока обмотки якоря (реакции якоря) создается падающая внешняя характеристика.
По данной схеме (с расщепленными полюсами) в промышленности нашли применение преобразователи ПС-300М, ПС-300М-1, ПС-300Т с генераторами СГ-300М, СГ-300М-1, СГ-300Т и некоторые другие сварочные агрегаты.
Основные технические данные преобразователей с генераторами, работающими по этой схеме, даны в табл. 30.

Таблица 30

Технические характеристики преобразователей ПС-300М, ПС-300М-1, ПС-300Т


Генераторы с поперечным полем. У генераторов этого типа падающая внешняя характеристика обеспечивается размагничивающим действием магнитного поля якоря, а группа различных внешних характеристик осуществляется изменением величины воздушного зазора в магнитопроводе.
Преобразователи для сварки в защитных газах. Для автоматической и полуавтоматической сварки в защитных газах необходимы сварочные преобразователи, обеспечивающие жесткие или возрастающие внешние характеристики. Для этой цели промышленность выпускает преобразователи ПСГ-350, ПСГ-500, а также универсальные преобразователи ПСУ-300 и ПСУ-500. Универсальные преобразователи типа ПСУ предназначены также для ручной дуговой сварки, наплавки и резки металлов постоянным током, поскольку обеспечивают получение крутопадающих внешних характеристик.
На рис. 73 показаны внешние характеристики преобразователя ПСУ-300.

Преобразователь ПСГ-500 конструктивно оформлен так же, как и описанный выше преобразователь ПСО-500. Преобразователь ПСГ-500 (рис. 74) имеет однокорпусное исполнение.


Двигатели у этих преобразователей одинаковые и различаются только измерительным прибором. Генератор преобразователя ПСГ-500 имеет на основных полюсах две обмотки возбуждения: одну независимую и другую последовательную, подмагиичивающую. Электрическая схема преобразователя ПСГ-500 показана на рис. 75.

Обмотка независимого возбуждения питается от сети переменного тока через феррорезонансный стабилизатор напряжения и блок селеновых выпрямителей ВС , обеспечивающих постоянное, не зависящее от колебаний напряжение сети, напряжение возбуждения. Напряжение на зажимах генератора плавно регулируется в пределах 15 - 40 в реостатом Р , включенным последовательно в цепь обмотки возбуждения. Якорь генератора имеет малую индуктивность, благодаря чему при коротком замыкании электрода с изделием быстро возрастает величина сварочного тока. Пределы регулирования величины тока 60 - 500 а .
Основные технические данные преобразователей типа ПСГ приведены в табл. 31.

Таблица 31

Технические данные преобразователей ПСГ-350, ПСГ-500


Универсальные сварочные преобразователи. Для ручной дуговой сварки и сварки на автоматах, снабженных авторегуляторами напряжения, автоматически воздействующими на скорость подачи электродной проволоки, требуются источники питания с падающими внешними характеристиками. Для питания автоматов и полуавтоматов с постоянной скоростью подачи электродной проволоки, в том числе для сварки в углекислом газе и порошковой проволокой ЭПС-15, необходимы генераторы с жесткими внешними характеристиками. Поскольку на заводах и монтажных площадках механизированные методы сварки используются в сочетании с ручной дуговой сваркой, поэтому требуются универсальные источники, обеспечивающие как падающие, так и жесткие внешние характеристики. Для этой цели разработана конструкция универсального сварочного преобразователя ПСУ-300, генератор которого имеет одну обмотку возбуждения. Внешние характеристики в этом генераторе создаются с помощью триода ПТ , включенного в цепь обмотки возбуждения ОВ , и обратной связи по току нагрузки (рис. 76). Он является четырехполюсным генератором постоянного тока нормального исполнения. Его обмотка возбуждения ОВ размещена на четырех главных полюсах и питается от устройства управления, размещенного на корпусе преобразователя.


Сварочная цепь и цепь обмотки возбуждения связаны между собой стабилизирующим трансформатором Т р, предназначенным для обеспечения динамических свойств генератора.
Величину сварочного тока регулируют реостатом - регулятором ДП , установленным на передней стенке управления. По мере роста сварочного тока сопротивление триода возрастает, ток возбуждения уменьшается, уменьшается и э. д. с. генератора, т. е. характеристика получается падающей. При переключении цепей управления внешняя характеристика становится жесткой.
Основные технические данные универсальных преобразователей даны в табл. 32.

Таблица 32

Основные технические данные универсальных преобразователей


Транзисторные источники питания начинают применяться для сварки неплавящимся электродом различных металлов и сплавов на постоянном токе в обычном и пульсирующем режиме. В настоящее время выпускаются транзисторные источники питания следующих типов: АП-4, АП-5 и АП-6, Они обеспечивают надежное возбуждение и высокую стабильность горения сварочной дуги и имеют бесступенчатое регулирование сварочного тока.
Основные технические данные транзисторных источников питания приведены в табл. 33.

Таблица 33

Технические данные транзисторных источнтков питания


Многопостовые сварочные преобразователи. Они предназначены для одновременного питания нескольких сварочных постов. В промышленности широко используется многопостовой преобразователь ПСМ-1000.
Преобразователь имеет однокорпусное исполнение стационарного типа (рис. 77) и состоит из трехфазного асинхронного двигателя АВ-91-4 с короткозамкнутым ротором и шестиполюсного генератора СГ-1000 со смешанным возбуждением. Кроме шунтовой обмотки на главных полюсах размещена последовательная обмотка для поддержания постоянного напряжения при увеличении нагрузки. Генератор имеет жесткую характеристику. Напряжение регулируется реостатом, включенным в цепь параллельной обмотки возбуждения.


Падающая внешняя характеристика, необходимая для ручной дуговой сварки, создается самостоятельно на каждом сварочном посту балластным реостатом типа РБ (этот реостат позволяет ступенчато изменять величину сварочного тока). Схема включения преобразователя ПСМ-1000 и балластных реостатов пбказана на рис. 78.

Основным недостатком многопостовых преобразователей является низкий к. п. д. сварочных постов. К преимуществам многопостовых преобразователей относятся: простота обслуживания, низкая стоимость оборудования, небольшая площадь для размещения оборудования и высокая надежность в эксплуатации.
Балластные реостаты. Балластный реостат служит для ступенчатого регулирования величины сварочного тока. Он состоит из нескольких элементов сопротивления, изготовленных из константановой проволоки с высоким омическим сопротивлением и включенных в сварочную цепь с помощью рубильников.
Схема наиболее распространенного балластного реостата РБ-300 показана на рис. 79. Балластным реостатом РБ-300 сварочный ток регулируется в пределах от 15 до 300 а .

Если для сварки требуется величина тока более 300 а , то следует включать параллельно два балластных реостата. При параллельном соединении двух реостатов сила тока увеличивается в 2 раза, т. е. для двух реостатов РБ-300 максимальный ток будет 600 а .

Сварочный преобразователь представляет собой комбинацию электродвигателя переменного тока и сварочного генераторапостоянного тока. Электрическая энергия сети переменного тока преобразуется в механическую энергию электродвигателя, вращает вал генератора и преобразуется в электрическую энергию постоянного сварочного тока. Поэтому КПД преобразователя невелик: из-за наличия вращающихся частей они менее надежны и удобны в эксплуатации по сравнению с выпрямителями. Однако для строительно-монтажных работ использование генераторов имеет преимущество по сравнению с другими источниками благодаря их меньшей чувствительности к колебаниям сетевого напряжения.

Для питания электрической дуги постоянным током выпускаются передвижные и стационарные сварочные преобразователи. На рис. 11 показано устройство одно-постового сварочного преобразователя ПСО-500, выпускаемого серийно нашей промышленностью.

Рис.1 Схема сварочного преобразователя ПСО-500

2-Электродвигатель

3-Вентелятор

4-Катушки полюсов

5-Якорь полюсов

6-Коллектор

7-Токо съемники

8- Маховичок для регулирования тока

9-сварочные клеммы

10-Амперметр

11-Пакетный выключатель

12-Коропка пускарегулирующей и контрольной аппаратуры преобразователя

Однопостовой сварочный преобразователь состоит из двух машин: из приводного электродвигателя 2 и сварочного гене­ратора постоянного тока, расположенных в общем корпусе 1. Якорь 5 генератора и ротор электродвигателя расположены на общем валу, подшипники которого установлены в крышках корпуса преобразователя. На валу между электродвигателем и генератором находится вентилятор 3, предназначенный для охлаждения агрегата во время его работы. Якорь генератора набран из тонких пластин электротехнической стали толщиной до 1 мм и снабжен продольными пазами, в которых уло­жены изолированные витки обмотки якоря. Концы обмотки якоря припаяны к соответствующим пластинам коллектора 6. На полюсах магнитов насажены катушки 4 с обмотками из изолированной проволоки, которые включаются в электри­ческую цепь генератора.

Генератор работает по принципу электромагнитной индук­ции. При вращении якоря 5 его обмотка пересекает магнитные силовые линии магнитов, в результате чего в обмотках якоря наводится переменный электрический ток , который при помощи коллектора 6 преобразуется в постоянный; с щеток токосъем­ника 7, при нагрузке в сварочной цепи, ток течет с коллек­тора к зажимам 9.

Пускорегулирующая и контрольная аппаратура преобразо­вателя смонтирована на корпусе 1 в общей коробке 12.

Преобразователь включается пакетным выключателем 11. Плавное регулирование величины тока возбуждения и регу­лирование режима работы сварочного генератора производят реостатом в цепи независимого возбуждения маховичком8. С помощью перемычки, соединяющей дополнительный зажим с одним из положительных выводов от последовательной обмотки, можно устанавливать сварочный ток для работы до 300 и до 500 А. Работа генератора на токах, превышающих верхние пределы (300 и 500 А), не 2эекомендуется, так как возможен перегрев машины и нарушится система комму­тации.

Величина сварочного тока определяется амперметром 10, шунт которого включен в цепь якоря генератора, смонтиро­ванного внутри корпуса преобразователя.

Обмотки генератора выполняют из меди или алюминия. Алюминиевые шины армируют медными пластинками. Для защиты от радиопомех, возникающих при работе генератора, применен емкостный фильтр из двух конденсаторов.

Перед пуском преобразователя в работу необходимо про­верить заземление корпуса; состояние щеток коллектора; на­дежность контактов во внутренней и внешней цепи; штурвал реостата повернуть против часовой стрелки до упора; проверить, не касаются ли концы сварочных проводов друг друга; уста­новить перемычку на доске зажимов соответственно требуемой величине сварочного тока (300 или 500 А).

Пуск преобразозателя осуществляется включением двига­теля в сеть (пакетным выключателем 11). После подсоеди­нения к сети необходимо проверить направление вращения генератора (если смотреть со стороны коллектора, ротор должен вращаться против часовой стрелки) и в случае необходимости поменять местами провода в месте их подключения к пита­ющей сети.

Для пояснения принципа работы сварочного преобразователя рассмотрим упрощенную электрическую схему преобразователя ПСО-500 (рис. 2). Асинхронный электродвигатель 1 с коротко-замкнутым ротором имеет три обмотки статора, включенные по схеме «звезда» (380 в). Пакетный выключатель 2 служит для включения электродвигателя в сеть трехфазного переменного тока напряжением 380 в. Четырех полюсный сварочный генератор 8 имеет обмотку 5 независимого возбуждения и последовательную размагничивающую обмотку 7, обеспечивающую падающую внешнюю характеристику генератора. Обмотки 5 и 7 расположены на разных полюсах. Независимая обмотка возбуждения 5 питается постоянным током от селенового выпрямителя 4, включенного в сеть питания обмоток электродвигателя через стабилизатор напряжения (однофазный трансформатор) 3 и включается одновременно с пуском электродвигателя.

Сварочный ток регулируется реостатом 6, включенным в цепь независимой обмотки возбуждения 5. Величина тока измеряется амперметром 9. Сварочная цепь подключается к зажимам доски 10, на которой имеется перемычка, переключающая секции последовательной обмотки 7 на два диапазона сварочного тока: до 300 а и до 500 а. Конденсаторы 11 устраняют радиопомехи, возникающие при работе преобразователя.


(Рис.2) Принципиальная электрическая схема сварочного преобразователя ПСО-500

1- Асинхронный электродвигатель

2- Пакетный выключатель

3- Стабилизатор напряжения

4- Селеновый выпрямитель

5-обмотка независимым возбуждением

6- Регулируемый реостат

7- Последовательная размагничивающая обмотка

8- Четырех полюсный сварочный генератор

9-Амперметр

10- зажимы доски

11- Конденсаторы

Принципиальная электрическая схема сварочного генератора с независимым возбуждением и размагничивающей последовательной обмоткой.

На рис.3 Дана схема генератора ГСО-500 с независимым возбуждением и размагничивающей последовательной обмоткой. Намагничивающая обмотка независимого возбуждения питается током от отдельного источника (сети переменного тока через полупроводниковый селеновый выпрямитель), а размагничивающая включена последовательно с обмоткой якоря так, что создаваемый ею магнитный поток Ф р направлен навстречу магнитному потоку Ф нв обмотки возбуждения. Ток I нв в обмотке возбуждения, а следовательно, и величину магнитного потока Ф нв в ней можно плавно изменять с помощью реостата R. Последовательная размагничивающая обмотка обычно секционирована, что позволяет применять ступенчатое регулирование сварочного тока изменением числа действующих ампер-витков в обмотке. Напряжение холостого хода генератора определяется током в обмотке независимого возбуждения. При увеличении сварочного тока I св возрастает магнитный поток Ф р в размагничивающей обмотке, который, действуя встречно потоку Ф нв обмотки независимого возбуждения, уменьшает напряжение в сварочной цепи, создавая падающую внешнюю характеристику генератора (рис. 146).

Изменяют внешние характеристики регулированием тока в обмотке независимого возбуждения и переключением числа витков размагничивающей обмотки. По этой схеме работают сварочные генераторы преобразователей ПСО-120, ПСО-800. Для получения жесткой внешней характеристики последовательные размагничивающие обмотки переключаются так, чтобы они действовали согласованно с обмоткой независимого возбуждения. По такой схеме работают генераторы преобразователей ПСГ-350 и ПСГ-500.

(Рис.3)схема Генератора с независимым возбуждением и размагничивающей последовательной обмоткой.

§ 105. Сварочные преобразователи


Многопостовые преобразователи. Они предназначены для одновременного питания нескольких сварочных постов. В промышленности используются многопостовые преобразователи ПСМ-1000, ПСМ-500. Преобразователь ПСМ-1000 имеет однокорпусное исполнение стационарного типа и состоит из трехфазного, асинхронного двигателя АВ-91-4 с короткозамкнутым ротором и шестиполюсного генератора СГ-1000 со смешанным возбуждением. Кроме шунтовой обмотки. на главных полюсах размещена последовательная обмотка для поддержания постоянного напряжения при увеличении нагрузки. Генератор имеет жесткую характеристику, напряжение регулируется реостатом, включенным в цепь параллельной обмотки возбуждения.
Падающая внешняя характеристика, необходимая для ручной дуговой сварки, создается самостоятельно на каждом сварочном посту балластным реостатом типа РБ (этот реостат позволяет ступенчато изменять величину сварочного тока). Схема включения преобразователя ПСМ-1000 и балластных реостатов показана на рис. 105.
Основным недостатком многопостовых преобразователей является низкий кпд сварочных постов. К преимуществам многопостовых преобразователей относятся: простота обслуживания, низкая стоимость оборудования, небольшая площадь для размещения оборудования и высокая надежность в эксплуатации.

Рис. 105. Схема присоединения сварочных постов через балластные реостаты к сварочному преобразователю ПСМ-1000:
А - амперметр, V - вольтметр, Ш - шунт, РР - реостат регулировочный, РБ - реостат балластный


Преобразователи для сварки в защитных газах. Для автоматической и механизированной сварки в защитных газах необходимы сварочные преобразователи, обеспечивающие жесткие или возрастающие внешние характеристики. Для этой цели промышленность выпускает преобразователи ПСГ-350, ПСГ-500, а также универсальные преобразователи ПСУ-300 и ПСУ-500. Универсальные преобразователи типа ПСУ предназначены для ручной дуговой сварки, наплавка и резки металлов постоянным током, поскольку обеспечивают получение крутопадающих внешних характеристик. На рис. 106 показаны внешние характеристики преобразователей ПСУ-300.


Рис. 106. Внешние характеристики преобразователя ПСУ-300:
1 - крутопадающие. 2 - жесткие


Преобразователь ПСГ-500 имеет однокорпусное исполнение. Генератор преобразователя имеет на основных полюсах две обмотки возбуждения: одну независимую и другую последовательную, подмагничивающую. Электрическая схема преобразователя ПСГ-500 показана на рис. 107. Обмотка независимого возбуждения питается от сети переменного тока через феррорезонансный стабилизатор напряжения и блок селеновых выпрямителей ВС, обеспечивающих постоянное, не зависящее от колебаний напряжение сети, напряжение возбуждения. Напряжение на зажимах генератора плавно регулируется в пределах 15-40 В реостатом Р, включенным последовательно в цепь обмотки возбуждения. Якорь генератора имеет малую индуктивность, благодаря чему при коротком замыкании электрода с изделием быстро возрастает сварочный ток, пределы регулирования величины тока 60-500 А.
Основные технические данные преобразователей типа ПСГ приведены в табл. 31.

31. Технические данные преобразователей ПСГ-356, ПСГ-500





Рис. 107. Электрическая схема преобразователя ПСГ-500:
Тр - трансформатор стабилизирующий, Г - генератор сварочный, ДЗГ - доска зажимов генератора, Д - двигатель, ДЗД - доска зажимов двигателя, ПК - пакетный выключатель, ВС - выпрямитель селеновый, Р - реостат цепи возбуждения, ДПД - доска переключения двигателя, V - вольтметр, К з - конденсатор защитный, К с - конденсатор стабилизирующий


Универсальные сварочные преобразователи. Для ручной дуговой сварки и сварки на автоматах, снабженных авторегуляторами напряжения, автоматически воздействующими на скорость подачи электродной проволоки, требуются источники питания с падающими внешними характеристиками. Для питания автоматов и полуавтоматов с постоянной скоростью подачи электродной проволоки, в том числе для сварки в углекислом газе и порошковой проволокой СП-2, необходимы генераторы с жесткими внешними характеристиками. Поскольку на заводах и монтажных площадках механизированные методы сварки используются в сочетании с ручной дуговой сваркой, требуются универсальные источники, обеспечивающие как падающие, так и жесткие внешние характеристики. Для этой цели разработана конструкция универсального сварочного преобразователя ПСУ-300, генератор которого имеет одну обмотку возбуждения. Внешние характеристики в этом генераторе создаются с помощью триода ПТ, включенного в цепь обмотки возбуждения ОВ, и обратной связи по току нагрузки (рис. 108). Он является четырех полюсным генератором постоянного тока нормального исполнения, его обмотка возбуждения ОВ размещена на четырех главных полюсах и питается от устройства управления, размещенного на корпусе преобразователя.



Рис. 108. Упрощенная электрическая схема универсального преобразователя ПСУ-300


Сварочная цепь и цепь обмотки возбуждения связаны между собой стабилизирующим трансформатором Тр, предназначенным для обеспечения динамических свойств генератора.
Величину сварочного тока регулируют реостатом – регулятором ДП, установленным на передней стенке управления. По мере роста сварочного тока сопротивление триода возрастает, ток возбуждения уменьшается, уменьшается и эдс генератора, т. е. характеристика получается падающей. При переключении цепей управления внешняя характеристика становится жесткой. Основные технические данные универсальных преобразователей даны в табл. 32.

32. Основные технические данные универсальных преобразователей



При эксплуатации преобразователей на открытых строительных и монтажных площадках необходимо защищать их от атмосферных осадков, для чего следует делать навесы или специальные будки. Перед пуском преобразователей, длительное время находившихся на незащищенных от атмосферных осадков площадках, нужно проверить сопротивление изоляции обмоток.
Особенно тщательного ухода требуют коллектор генератора, щетки и подшипники. Коллектор нужно содержать в чистоте и периодически очищать от пыли чистой тряпкой, смоченной в бензине. При нормальном состоянии коллектор не должен иметь следов нагара. При появлении нагара необходимо выяснить причину его возникновения и устранить ее, а коллектор прошлифовать. Поврежденные или изношенные щетки следует заменить новыми и притереть их к коллектору, а образующуюся пыль удалить с помощью струи сжатого воздуха, после чего генератор включить на холостую работу для окончательной прошлифовки щеток.
Смазку в шарикоподшипниках рекомендуется заменять 1-2 раза в год. После удаления смазки подшипники тщательно промыть бензином, протереть, просушить и снова заполнить смазкой. Необходимо следить за тем, чтобы в подшипники не попадала пыль и песок. При работе шум шарикоподшипников должен быть глухим, ровным, без резких звуков.14898 |

Во многих случаях для выполнения сварочных работ применяют установки, основным узлов которых является понижающий трансформатор, но существуют и другие виды сварочного оборудования. О том, что такое сварочный преобразователь, знают в основном только профессионалы, но существует множество процессов, в которых их применение является единственно возможным вариантом.

Конструктивное устройство

Сварочный преобразователь это электрическая машина, состоящая из приводного электродвигателя и генератора, который обеспечивает выработку тока, необходимого для выполнения работ. В связи с тем, что устройство сварочного генератора включает в себя вращающиеся детали, его КПД и надежность несколько ниже, чем у традиционных выпрямителей и трансформаторов.

Но преимущество преобразователя заключается в том, что он вырабатывает сварочный ток, который практически не зависит от перепадов питающего напряжения. Поэтому его применение целесообразно для выполнения сварочных работ, к которым предъявляются высокие требования по качеству.

Все рабочие узлы сварочного преобразователя, в том числе и пускорегулирующая аппаратура, монтируются в одном едином корпусе. При этом существуют передвижные сварочные преобразователи и агрегаты, а так же стационарные посты. Первые, в основном применяют при выполнении монтажно-строительных работ, вторые, в заводских условиях.

Установки данного типа могут вырабатывать значительный сварочный ток (до 500 А и более), но стоит помнить о том, что эксплуатация в режимах, превышающих нормативный показатель по этому параметру, не допускается. Работа в критичных режимах может привести к выходу установки из строя.

ПреобразовательПСО 500

Принцип работы сварочного преобразователя позволяет вырабатывать постоянный и переменный сварочный ток. Очень часто на производстве можно увидеть преобразователь ПСО 500, который отличается высокой надежностью и производительностью.

К его особенностям можно отнести следующие моменты:

Сварочный преобразователь ПСО 500 установлен на колесную базу, которая обеспечивает ему хорошую мобильность. Благодаря этому агрегат может эксплуатироваться в условиях строительной или монтажной площадки.

При эксплуатации сварочных преобразователей необходимо соблюдать правила безопасной эксплуатации электрооборудования:

  • Корпус агрегата должен быть в обязательном порядке заземлен, все работы по подключению установки к питающей сети должны выполняться квалифицированным электриком.
  • Учитывая то, что преобразователь должен подключаться к сети 220/380В, клеммная коробка двигателя должна быть надежно изолирована и закрыта.

Несмотря на то, что сварочный преобразователь потребляет больше энергии для выполнения работ (в связи с наличием механических связей и невысоким КПД), он обеспечивает стабильный сварочный ток, независящий от перепадов питающего напряжения, что позволяет повысить качество сварного шва.

Сварочные преобразователи под­разделяют на следующие группы: по числу питаемых постов - одно - постовые, предназначенные для пита­ния одной сварочной дуги; много­постовые, питающие одновременно несколько сварочных дуг; по спо­собу установки -стационар­ные, устанавливаемые неподвижно на фундаментах; передвижные, монти­руемые на тележках; по р о д у дви­гателей, приводящих генератор во вращение,- машины с электрическим приводом; машины с двигателем внут­реннего сгорания (бензиновым или ди­зельным) ; по способу выполне­ния - однокорпусные, в которых ге­нератор и двигатель вмонтированы в единый корпус; раздельные, в которых генератор и двигатель установлены на одной раме, а привод осуществляется через соединительную муфту.

Однопостовые сварочные преобра­зователи состоят из генератора и электродвигателя или двигателя внут­реннего сгорания. Электрическая схе­ма сварочного генератора обеспечи­вает падающую внешнюю характерис­тику и ограничение тока короткого замыкания. Внешняя вольт-амперная характеристика / (рис. 14) показывает зависимость между напряжением и то­ком на клеммах сварочной цепи гене­ратора. Для устойчивости горения сварочной дуги характеристика гене­ратора / должна пересекать характе­ристику дуги III. При возбуждении дуги напряжение изменяется (//) от точки I к точке 2. При возникновении

Генераторы с расщепленными по­люсами обеспечивают падающую внешнюю характеристику, используя размагничивающее действие магнит­ного потока якоря. На рис. 15 показа­на схема сварочного генератора такого типа. Генератор имеет четыре основных (N г и Sr - главные, Nn И Sn - поперечные) и два дополни­тельных (N и S ) полюса. При этом одноименные основные полюсы распо­ложены рядом, составляя как бы один раздвоенный полюс. Обмотки возбуж­дения имеют две секции: нерегулируе­мую 2 и регулируемую 1. Нерегулируе­мая обмотка расположена на всех четырех основных полюсах, а регули­руемая - только нк поперечных. В цепь регулируемой обмотки возбужде­ния включен реостат 3. На дополни­тельных полюсах расположена сериес - ная обмотка 4. По нейтральной ли­нии симметрии О - О между разно­именными полюсами на коллекторе ге­нератора расположены основные щет­ки а и ft, к которым подключается сварочная цепь. Дополнительная щет­ка с служит для питания обмоток возбуждения.

При холостом ходе генератора (рис. 16, а) обмотки полюсов создают два магнитных потока Фг и Фп, кото­рые индуцируют э. д. с. в обмотке якоря. При замыкании сварочной цепи (рис. 16, б) по обмотке якоря потечет ток, который создает магнитный поток якоря Фя, направленный по линии основных щеток и замыкающийся че­рез полюсы генератора. Магнитный поток якоря Фя можно разложить на два составляющих потока Фяг и Фяп. Поток Фяг по направлению будет сов­падать с потоком Фг главных полюсов, но усилить его не может, так как главные полюсы генератора имеют вырезы, уменьшающие площади их по­перечных сечений, и поэтому они рабо­тают при полном магнитном насы­щении (т. е. магнитный поток этих по­люсов независимо от нагрузки остает­ся практически постоянным). Поток ФЯп направлен против потока Ф„ поперечных-полюсов и поэтому ослаб­ляет его и даже может изменить направление суммарного потока. Та­кое действие магнитного потока якоря приводит к ослаблению суммарного
магнитного погона генератора, а отсю­да к уменьшению напряжения на ос­новных щетках генератора. Чем боль­ший ток протекает по обмотке якоря, тем больше магнитный поток Фя, тем больше снижается напряжение. При коротком замыкании сварочной цепи напряжение на основных щетках почти достигает нулевого значения.

Сварочный ток регулируют в два приема - грубо и точно. При грубом регулировании смещают щеточную траверсу, на которой расположены все три щетки генератора. Если сдвигать щетки по направлению вращения яко­ря, то размагничивающее действие потока якоря увеличивается и сва­рочный ток уменьшается. При обрат­ном сдвиге размагничивающее дейст­вие уменьшается и сварочный ток увеличивается. Таким образом уста­навливают интервалы больших и ма­лых токов. Плавное и точное регу­лирование тока производят реостатом, включенным в цепь обмотки возбужде­ния. Увеличивая или уменьшая рео­статом ток возбуждения в обмотке поперечных полюсов, изменяют маг­нитный поток Фп, тем самым изменяют напряжение генератора и сварочный ток.

В генераторах с расщепленными полюсами поздних выпусков свароч­ный ток регулируют изменением числа витков секционированных обмоток по­люсов генератора и реостатом, вклю­ченным в цепь обмотки возбуждения. Реостат устанавливается на корпусе генератора и имеет шкалу с деле­ниями в амперах. По такой схеме работают генераторы СГ-300М-1, ис­пользуемые в преобразователях ПС-300М-1.

Принципиальная схема генератора с размагничивающим действием пос­ледовательной обмотки возбуждения, включенной в сварочную цепь, пред­ставлена на рис. 17. Генератор имеет две обмотки: обмотку возбуж­дения 1 и размагничивающую после­довательную обмотку 2. Обмотка воз­буждения питается либо от основной и дополнительной щеток (b и с), либо от специального источника постоян­ного тока (от сети переменного тока через селеновый выпрямитель). Маг-

Нитный поток Фв, создаваемый этой обмоткой, постоянный и не зависит от нагрузки генератора. Размагничиваю­щая обмотка включена последователь­но с обмоткой якоря так, что при горении дуги сварочный ток, проходя через обмотку, создает магнитный по­ток Фп, направленный против потока Ф0. Следовательно, э. д. с. генератора будет индуцироваться результирую­щим магнитным потоком Фв - Фп - С увеличением сварочного тока маг­нитный поток Фп возрастает, а резуль­тирующий магнитный поток Ф„ - Фм уменьшается. Как следствие, умень­шается индуцируемая э. д. с. генера­тора. Таким образом, размагничиваю­щее действие обмотки 2 обеспечивает получение падающей внешней харак­теристики генератора. Сварочный ток регулируется переключением витков последовательной обмотки (грубая регулировка - два диапазона) и рео­статом обмотки возбуждения (плав­ная и точная регулировка в пределах каждого диапазона). По такой схеме выпускаются генераторы ГСО-120, ГСО-ЗОО, ГС0500, ГС-500 и др. Крат­кая техническая характеристика сва-

Рочных преобразователей дана в табл. 1.

На рис. 18 представлен однопостовой пере­движной сварочный преобразователь ПСО-500, выпускаемый серийно и нашедший широкое применение при строительно-монтажных рабо­тах. Он состоит из генератора ГСО-5СЮ и трехфазного асинхронного электродвигателя АВ-72-4, смонтированных в едином корпусе на колесах для перемещения по строительной пло­щадке. Преобразователь предназначен для руч­ной дуговой сварки, полуавтоматической шлан­говой и автоматической сварки под флюсом. Для грубого регулирования сварочного тока (переключения витков последовательной обмот­ки) на клеммовую доску генератора выведены один отрицательный и два положительных кон­такта. Если необходим сварочный ток в преде­лах 120...350 А, то сварочные провода присо­единяют к отрицательному и среднему положи­тельному контактам. При работе на токах 350...600 А сварочные провода присоединяют к отрицательному и крайнему положительному контактам. Плавно сварочный ток регулируют реостатом, включенным в цепь обмотки неза­висимого возбуждения. Реостат расположен на корпусе машины и имеет маховик с токоука- зателем. Шкала имеет два ряда цифр, соответ­ствующих подключаемым контактам: внутрен­ний ряд - до 350 А и наружный ряд - до 6СЮ А.

Для выполнения сварочных работ при отсутствии электроэнергии (на новостройках, на монтажных работах в полевых условиях, при сварке газо­нефтепроводов, при установке мачт электропередач высокого напряжения и др.) применяют передвижные сва­рочные агрегаты, состоящие из сва­рочного генератора и двигателя внут­реннего сгорания. Краткая техничес­кая характеристика наиболее рас­пространенных сварочных агрегатов с двигателями внутреннего сгорания дана в табл. 2.

Таблица 2

Марка агрегата

Марка гене­ратора

Номинальное напряже­ние, В

Пределы ре­гулирования сварочного тока, А

Двигатель

Масса агре­гата, кг

Мощность, кВт (л. с.)

На рис. 19 представлен сварочный агрегат этой группы ПАС-400-VIII. Агрегат состоит из генератора СГП-3-VI и двигателя внутреннего сгорания ЗИЛ-120 или ЗИЛ-164. Генератор работает по схеме с размагничивающей последо - вательиой обмоткой. Регулирование тока произ водят реостатом цепи основной обмотки воз­буждения. Двигатель с варочного агрегата спе­циально переоборудован для режима длитель­ной стационарной работы: он имеет автомати­ческий центробежный регулятор скорости вра­щения; ручное регулирование для работы при малых скоростях; автоматическое выключение зажигания при внезапном увеличении скорости. Сварочный агрегат смонтирован на жесткой металлической раме с катками для переме­щения. Наличие крыши и боковых металличес­ких штор, защищающих от атмосферных осад­ков, позволяет использовать агрегат для работы на открытом воздухе.

Для сварки в защитных газах, а также для полуавтоматической и авто­матической сварки применяют генера­торы с жесткой или возрастающей внешней характеристикой. Такие гене­раторы имеют обмотки независимого возбуждения и подмагничивающую последовательную обмотку. При хо­лостом ходе э. д. с. генератора наво­дится магнитным потоком, который со­здается обмоткой независимого воз­буждения. При рабочем режиме сва­рочный ток, проходя через последо­вательную обмотку, создает магнит­ный поток, совпадающий по направ­лению с магнитным потоком обмотки независимого возбуждения. Тем са­мым обеспечивается жесткая или воз­растающая вольт-амперная харак­теристика.

На рис. 20 представлен преобразователь такого типа ПСГ-350, состоящий из свароч­ного генератора постоянного тока ГСГ-350 и трехфазного асинхронного электродвигателя АВ-61-2 мощностью 14 кВт. Генератор имев! обмотку независимого возбуждения и подмаг­ничивающую последовательную обмотку. Об­мотка независимого возбуждения питается от внешней сети через селеновые выпрямители и стабилизатор напряжения, который исключает влияние колебаний напряжения в сети на ток возбуждения. Последовательная обмотка раз­делена на две секции: при включении в свароч­ную цепь части витков генератор работает на режиме жесткой характеристики, а при ис­пользовании всех витков обмотки генератор дает возрастающую внешнюю характеристику. Ге­нератор и двигатель размещены в общем корпу­се и смонтированы на тележке.

Универсальные преобразователи ПСУ-300 и ПСУ-500-2, предназначен­ные для ручной сварки, автоматичес­кой сварки под флюсом, а также автоматической и полуавтоматической сварки в защитных газах, обеспечи­вают как падающую, так и жесткую внешнюю характеристику. В этих преобразователях, переключая неза­висимую и последовательную обмотки генератора, можно создавать размаг­ничивающий и подмагничивающий по­токи и соответственно получать ту или иную характеристику.

При работе на строительной пло­щадке или заводе нескольких свароч­ных постов, расположенных недалеко друг от друга, применяют многопосто­вой сварочный преобразователь. Внешняя характеристика многопос­тового сварочного генератора должна быть жесткой, т. е. независимо от количества работающих постов напря­жение генератора должно быть по­стоянным. Для получения постоянного напряжения многопостовои генератор (рис. 21) имеет параллельную обмот­ку возбуждения 1, создающую магнит­ный поток 0i и последовательную обмотку 3, создающую магнитный по­ток Фа того же направления.

При холостом ходе э. д. с. генерато­ра индуцируется только магнитным по­током Фь так как в последовательной обмотке ток отсутствует. Напряжение генератора достаточно для зажигания дуги. Во время сварки появляется ток в обмотке якоря и, следовательно, в последовательной обмотке возбуж­дения. При этом появляется магнит­ный поток Ф^ и э. д. с. будет индуциро­ваться суммарным потоком 0i + Фг. Падение напряжения внутри генерато­ра при рабочем режиме компенсирует­ся увеличивающимся магнитным пото­ком, и поэтому напряжение остается равным напряжению холостого хода. Для получения падающей внешней характеристики сварочные посты включают в цепь генератора через регулируемые балластные реостаты 4. Напряжение генератора регулируют реостатом 2, включенным в цепь па­раллельной обмотки возбуждения. Сварочный ток устанавливают измене­нием сопротивления балластного реостата.

Многопостовой сварочный пре­образователь ПСМ-1000 (рис. 22) состоит из сварочного генератора по­стоянного тока типа СГ-1000 и трех­фазного асинхронного двигателя, смонтированных в одном корпусе. Генератор СГ-1000, шестиполюсный, с самовозбуждением, имеет параллель-

JS 220/3808 15 кВт

Ную и последовательную обмотки, создающие магнитные потоки одина­кового направления. В комплект сва­рочной машины входят девять бал­ластных реостатов РБ-200, позволяю­щих развернуть девять постов.

Преобразователи ПСМ-1000-1 и ПСМ-1000-11 существенных конструк­тивных отличий не имеют. Обмотки возбуждения генератора у

ПСМ-1000-I изготовлены из меди, а у ПСМ-1000-II - из алюминия. Послед­ней модификацией является ПСМ-1000-4, состоящий из генератора ГСМ-1000-4 и электродвигателя А2-82-2 мощностью 75 кВт. В комплект преобразователя входят балластные реостаты РБ-200-1 (9 шт.) или РБ-300-1 (6 шт.).

Балластный реостат РБ-200 (рис. 23) имеет пять рубильников, пере­ключением которых устанавливают со­противление реостата. Эти переключе­ния позволяют регулировать свароч­ный ток ступенчато через каждые 10 А в пределах 10...200 А.

Применение многопостовых сва­рочных преобразователей уменьшает площади, занимаемые сварочным обо­рудованием, сокращает расходы на ре­монт, уход и обслуживание. Однако к. п. д. сварочного поста значитель­но ниже, чем при однопостовом пре­образователе, вследствие больших по­терь мощности в балластных реоста­тах. Поэтому выбор одного много­постового или нескольких однопосто - вых сварочных агрегатов обосновы­вают технико-экономическим расчетом для конкретных условий.

Если экономически выгодно приме­нение однопостовых сварочных агре­гатов, но мощности одного генератора недостаточно для работы сварочного поста, включают параллельно два сва­рочных агрегата. При параллельном включении генераторов необходимо соблюдать следующие условия. Гене­раторы должны быть одинаковыми по типу и внешним характеристикам. До включения необходимо отрегулиро­вать генераторы на одинаковое напря-

Жение холостого хода. После включе­ния в работу следует с помощью регу­лирующих устройств установить по амперметру одинаковую нагрузку ге­нераторов. При неодинаковой нагруз­ке напряжение одного генератора бу­дет выше другого и генератор с низким напряжением, питаемый током второго генератора, будет работать как двига­тель. Это приведет к размагничива­нию полюсов генератора и выходу его нз строя. Поэтому следует по­стоянно следить за показаниями ам­перметров и при необходимости регу­лировать равномерность нагрузки.

Для уравнивания напряжения па­раллельно работающих генераторов с падающими внешними характеристи­ками применяют перекрестное питание их цепей возбуждения: обмотки воз­буждения одного генератора питают­ся от щеток якоря другого генерато­ра (рис.24) .Для этой цели генераторы имеют уравнительные контакты, кото­рые надо при параллельной работе соединить между собой.

При параллельном включении мно­гопостовых генераторов ПСМ-1000 необходимо клеммы на щитках генера­торов ГС-1000, обозначенные буквой У (уравнительный), соединить между собой проводом; при этом последова­тельные обмотки генераторов соеди­няются параллельно и, таким обра­зом, исключаются колебания в распре­делении нагрузки между генератора­ми.

Источники питания постоянного тока подразделяются на две основные группы:

  • сварочные преобразователи вращающегося типа (сварочные генераторы);
  • сварочные выпрямительные установки (сварочные выпрямители).

Генераторы постоянного тока подразделяются по количеству питаемых постов:

  • однопостовые;
  • многопостовые;

по способу установки:

  • стационарные;
  • передвижные;

по роду привода:

  • генераторы с электрическим двигателем;
  • генераторы с двигателем внутреннего сгорания;

по конструктивному выполнению:

  • однокорпусные;
  • двухкорпусные.

По форме внешних характеристик сварочные генераторы могут быть:

  • с падающими внешними характеристиками;
  • с жесткими и пологопадающими характеристиками;
  • комбинированного типа (универсальные генераторы, при переключении обмоток или регулирующих устройств которых можно получить падающие, жесткие или пологопадающие характеристики).

Наибольшее распространение получили генераторы с падающими внешними характеристиками, работающие по схемам:

  • генераторы с независимым возбуждением, и размагничивающей последовательной обмоткой;
  • генераторы с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;
  • генераторы с расщепленными полюсами.

Ни один из трех видов генераторов с падающими внешними характеристиками не выделяется существенными преимуществами как по технологическим, так и по энергетическим и весовым показателям.

Сварочный преобразователь состоит из асинхронного двигателя и генератора постоянного тока, собранных в одном корпусе. Ротор двигателя и якорь генератора находятся на одном валу. Преобразователь устанавливается на раме или на колесах.

Существует несколько видов генераторов. Один из них - генератор с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой. У такого генератора независимая обмотка, питающаяся от сети переменного тока через селеновый выпрямитель, создает магнитный поток, индуктирующий на щетках генератора напряжение, необходимое для возбуждения дуги. Регулирование сварочного тока производится переключением числа витков последовательной обмотки. В пределах каждого диапазона сварочный ток плавно регулируется реостатом.

Вторым типом генератора является генератор с параллельной обмоткой возбуждения и размагничивающей последовательной обмоткой. Магнитные полюса этого генератора должны иметь остаточный магнетизм, поэтому изготавливаются они из ферромагнитной стали. Устанавливаются на агрегатах с двигателями внутреннего сгорания.

Обслуживание сварочных преобразователей. При эксплуатации преобразователей на открытых строительных и монтажных площадках необходимо защищать их от воздействия атмосферных осадков с помощью специальных будок или навесов. Перед пуском преобразователей, длительное время находившихся под воздействием атмосферных осадков, следует проверить сопротивление изоляции обмоток. Особенно тщательного ухода требуют коллектор генератора, щетки и подшипники. Коллектор следует содержать в чистоте и периодически очищать от пыли путем протирки чистой тряпочкой, смоченной в бензине. При нормальном состоянии коллектор не должен иметь следов нагара. При появлении нагара необходимо выяснить причину его возникновения и устранить ее, а коллектор прошлифовать. Поврежденные или изношенные щетки следует заменить новыми и притереть их к коллектору.

Таблица 38. Сварочные преобразователи с падающей характеристикой

Характеристика Преобразователи с независимым возбуждением и последовательной размагничивающей обмоткой
ПСО-120 ПСО-300А ПД-303 ПСО-500 ПСО-800 АСО-2000 ПС-1000-Ш
Тип генератора ГСО-120 ГСО-300А - ГСО-500 ГСО-800 СГ-1000 ГС-1000
Номинальный сварочный ток, А 120 300 300 500 800 1000х2 1000
Напряжение холостого хода, В 48-65 55-80 65 58-86 60-90 - -
30-120 75-300 80-300 125-600 200-800 300-1200 300-1200
7,3 12,5 10,0 28,0 55 56,0 55,0
2900 2890 2890 2930 - 1460 1460
К.п.д. преобразователя, % 55 60 - 59 57 59 60
Габаритные размеры, мм:
длина 1055 1015 1052 1275 - 4000 1465
ширина 550 590 508 770 - 93,5 770
высота 730 980 996 1080 - 1190 910
Масса, кг 155 400 331 540 1040 4100 1600

Таблица 39. Сварочные преобразователи с жесткими характеристиками и универсальные

Характеристика Тип
ПСГ-350 ПСГ-500-1 ПСУ-300 ПСУ-500-2
с падающей характеристикой с жесткой характеристикой с падающей характеристикой с жесткой характеристикой
Тип генератора ГСГ-350 ПСГ-500-1 ГСУ-300 ГСУ-500-2
Номинальный сварочный ток, А 350 500 300 500 - -
Напряжение холостого хода, В 15-35 18-42 48 16-36 20-48 16-32
Пределы регулирования сварочного тока, А 50-350 60-500 75-300 - 120-500 60-500
ПР, % 60 60 65 60 65 60
Номинальное напряжение, В 30 40 30 30 40 40
Пределы регулирования напряжения, В 15-35 16-40 - 10-35 26-40 16-40
Скорость вращения якоря, об/мин. 2900 2930 2930 2890 - -
Мощность преобразователя, кВт 14 28 28 10
Габаритные размеры, мм:
длина 1085 1052 1160 1055
ширина 555 590 490 580
высота 980 1013 740 920
Масса, кг 400 500 315 545

Таблица 40. Неисправности сварочных преобразователей, причины их вызывающие, и способы устранения

Неисправности Причины появления Способ устранения
Генератор не дает напряжения Размагничивание генератора Намагнитить полюса генератора, подключив обмотки возбуждения к источнику постоянного тока
Генератор не дает напряжения Сильное загрязнение коллектора Очистить коллектор стеклянной мелкой бумагой и протереть тряпкой, смоченной в бензине
Генератор не дает напряжения Обрыв в цепи обмотки возбуждения Устранить обрыв в цепи
Генератор не дает напряжения Плохое прижатие щеток, питающих обмотку возбуждения Проверить пружины нажатия щеток и устранить возможное заедание щеток в щеткодержателе
Перегрев обмотки статора Перегрузка сварочного генератора Устранить перегрузку
Перегрев обмотки статора Большое падение напряжения в проводах питания двигателя Устранить падение напряжения
Перегрев обмотки статора
Обрыв в цепи одной из фаз Устранить обрыв в цепи
Не запускается асинхронный двигатель Неправильное соединение фаз обмотки Исправить соединение фаз обмоток
Искрение и значительный нагар в одном месте коллектора Обрыв обмотки якоря или плохая пайка ее соединения Ликвидировать обрыв и улучшить качество пайки соединений обмотки
Нагрев якоря Короткое замыкание части витков якоря Тщательно очистить коллектор от загрязнения
Обгорание группы пластин коллектора Биение коллектора или заедание щетки в щеткодержателе Проверить индикатором коллектор на биение. При биении свыше 0,03 мм необходимо коллектор проточить на токарном станке. Устранить заедание щетки, подогнав ее по обойме щеткодержателя

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»