Теоретическая механика 1 курс. Краткий курс теоретической механики. Тарг С.М. Теорема об изменении кинетической энергии механической системы

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Содержание

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Кинематика точки.

1. Предмет теоретической механики. Основные абстракции.

Теоретическая механика - это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел

Механическим движением называется перемещение тела по отношению к другому телу, происходящее в пространстве и во времени.

Механическим взаимодействием называется такое взаимодействие материальных тел, которое изменяет характер их механического движения.

Статика - это раздел теоретической механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Кинематика - это раздел теоретической механики, в котором изучаетсядвижение материальных тел в пространстве с геометрической точки зрения, независимо от действующих на них сил.

Динамика - это раздел механики, в котором изучается движение материальных тел в пространстве в зависимости от действующих на них сил.

Объекты изучения в теоретической механике:

материальная точка,

система материальных точек,

Абсолютно твердое тело.

Абсолютное пространство и абсолютное время независимы одно от другого. Абсолютное пространство - трехмерное, однородное, неподвижное евклидово пространство. Абсолютное время - течет от прошлого к будущему непрерывно, оно однородно, одинаково во всех точках пространства и не зависит от движения материи.

2. Предмет кинематики.

Кинематика - это раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (т.е. массы) и действующих на них сил

Для определения положения движущегося тела (или точки) с тем телом, по отношению к которому изучается движение данного тела, жестко, связывают какую-нибудь систему координат, которая вместе с телом образует систему отсчета.

Основная задача кинематики состоит в том, чтобы, зная закон движения данного тела (точки), определить все кинематические величины, характеризующие его движение (скорость и ускорение).

3. Способы задания движения точки

· Естественный способ

Должно быть известно:

Траектория движения точки;

Начало и направление отсчета;

Закон движения точки по заданной траектории в форме (1.1)

· Координатный способ

Уравнения (1.2) – уравнения движения точки М.

Уравнение траектории точки М можно получить, исключив параметр времени « t » из уравнений (1.2)

· Векторный способ

(1.3)

Связь между координатным и векторным способами задания движения точки

(1.4)

Связь между координатным и естественным способами задания движения точки

Определить траекторию точки, исключив время из уравнений (1.2);

-- найти закон движения точки по траектории (воспользоваться выражением для дифференциала дуги)

После интегрирования получим закон движения точки по заданной траектории:

Связь между координатным и векторным способами задания движения точки определяется уравнением (1.4)

4. Определение скорости точки при векторном способе задания движения.

Пусть в момент времени t положение точки определяется радиусом-вектором , а в момент времени t 1 – радиусом-вектором , тогда за промежуток времени точка совершит перемещение .


(1.5)

средняя скорость точки,

направлен вектор также как и вектор

Скорость точки в данный момент времени

Чтобы получить скорость точки в данный момент времени, необходимо совершить предельный переход

(1.6)

(1.7)

Вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора по времени и направлен по касательной к траектории в данной точке.

(единица измерения ¾ м/с, км/час)

Вектор среднего ускорения имеет то же направление, что и вектор Δ v , то есть, направлен в сторону вогнутости траектории.

Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.

(еденица измерения - )

Как располагается вектор по отношению к траектории точки?

При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , также как и вектор ср лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор ср будет направлен в сторону вогнутости траектории и будет лежать в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке М 1 . В пределе, когда точка М 1 стремится к М эта плоскость занимает положение так называемой соприкасающейся плоскости. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

В курсе рассматриваются: кинематика точки и твёрдого тела (причём с разных точек зрения предлагается рассмотреть проблему ориентации твердого тела), классические задачи динамики механических систем и динамики твердого тела, элементы небесной механики, движение систем переменного состава, теория удара, дифференциальные уравнения аналитической динамики.

В курсе представлены все традиционные разделы теоретической механики, однако особое внимание уделено рассмотрению наиболее содержательных и ценных для теории и приложений разделов динамики и методов аналитической механики; статика изучается как раздел динамики, а в разделе кинематики подробно вводятся необходимые для раздела динамики понятия и математический аппарат.

Информационные ресурсы

Гантмахер Ф.Р. Лекции по аналитической механике. – 3-е изд. – М.: Физматлит, 2001.
Журавлёв В.Ф. Основы теоретической механики. – 2-е изд. – М.: Физматлит, 2001; 3-е изд. – М.: Физматлит, 2008.
Маркеев А.П. Теоретическая механика. – Москва – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2007.

Требования

Курс рассчитан на студентов владеющих аппаратом аналитической геометрии и линейной алгебры в объеме программы первого курса технического вуза.

Программа курса

1. Кинематика точки
1.1. Задачи кинематики. Декартова система координат. Разложение вектора по ортонормированному базису. Радиус-вектор и координаты точки. Скорость и ускорение точки. Траектория движения.
1.2. Естественный трёхгранник. Разложение скорости и ускорения в осях естественного трехгранника (теорема Гюйгенса).
1.3. Криволинейные координаты точки, примеры: полярная, цилиндрическая и сферическая системы координат. Составляющие скорости и проекции ускорения на оси криволинейной системы координат.

2. Способы задания ориентации твердого тела
2.1. Твердое тело. Неподвижная и связанная с телом системы координат.
2.2. Ортогональные матрицы поворота и их свойства. Теорема Эйлера о конечном повороте.
2.3. Активная и пассивная точки зрения на ортогональное преобразование. Сложение поворотов.
2.4. Углы конечного вращения: углы Эйлера и "самолетные" углы. Выражение ортогональной матрицы через углы конечного вращения.

3. Пространственное движение твердого тела
3.1. Поступательное и вращательное движения твердого тела. Угловая скорость и угловое ускорение.
3.2. Распределение скоростей (формула Эйлера) и ускорений (формула Ривальса) точек твердого тела.
3.3. Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось.

4. Плоскопараллельное движение
4.1. Понятие плоскопараллельного движения тела. Угловая скорость и угловое ускорение в случае плоскопараллельного движения. Мгновенный центр скоростей.

5. Сложное движение точки и твердого тела
5.1. Неподвижная и движущаяся системы координат. Абсолютное, относительное и переносное движения точки.
5.2. Теорема о сложении скоростей при сложном движении точки, относительная и переносная скорости точки. Теорема Кориолиса о сложении ускорений при сложном движении точки, относительное, переносное и кориолисово ускорения точки.
5.3. Абсолютные, относительные и переносные угловая скорость и угловое ускорение тела.

6. Движение твердого тела с неподвижной точкой (кватернионное изложение)
6.1. Понятие о комплексных и гиперкомплексных числах. Алгебра кватернионов. Кватернионное произведение. Сопряженный и обратный кватернион, норма и модуль.
6.2. Тригонометрическое представление единичного кватерниона. Кватернионный способ задания поворота тела. Теорема Эйлера о конечном повороте.
6.3. Связь между компонентами кватерниона в разных базисах. Сложение поворотов. Параметры Родрига-Гамильтона.

7. Экзаменационная работа

8. Основные понятия динамики.
8.1 Импульс, момент импульса (кинетический момент), кинетическая энергия.
8.2 Мощность сил, работа сил, потенциальная и полная энергия.
8.3 Центр масс (центр инерции) системы. Момент инерции системы относительно оси.
8.4 Моменты инерции относительно параллельных осей; теорема Гюйгенса–Штейнера.
8.5 Тензор и эллипсоид инерции. Главные оси инерции. Свойства осевых моментов инерции.
8.6 Вычисление момента импульса и кинетической энергии тела с помощью тензора инерции.

9. Основные теоремы динамики в инерциальных и неинерциальных системах отсчёта.
9.1 Теорема об изменении импульса системы в инерциальной системе отсчета. Теорема о движении центра масс.
9.2 Теорема об изменении момента импульса системы в инерциальной системе отсчета.
9.3 Теорема об изменении кинетической энергии системы в инерциальной системе отсчета.
9.4 Потенциальные, гироскопические и диссипативные силы.
9.5 Основные теоремы динамики в неинерциальных системах отсчета.

10. Движение твёрдого тела с неподвижной точкой по инерции.
10.1 Динамические уравнения Эйлера.
10.2 Случай Эйлера, первые интегралы динамических уравнений; перманентные вращения.
10.3 Интерпретации Пуансо и Маккулага.
10.4 Регулярная прецессия в случае динамической симметрии тела.

11. Движение тяжёлого твёрдого тела с неподвижной точкой.
11.1 Общая постановка задачи о движении тяжелого твердого тела вокруг.
неподвижной точки. Динамические уравнения Эйлера и их первые интегралы.
11.2 Качественный анализ движения твердого тела в случае Лагранжа.
11.3 Вынужденная регулярная прецессия динамически симметричного твердого тела.
11.4 Основная формула гироскопии.
11.5 Понятие об элементарной теории гироскопов.

12. Динамика точки в центральном поле.
12.1 Уравнение Бине.
12.2 Уравнение орбиты. Законы Кеплера.
12.3 Задача рассеяния.
12.4 Задача двух тел. Уравнения движения. Интеграл площадей, интеграл энергии, интеграл Лапласа.

13. Динамика систем переменного состава.
13.1 Основные понятия и теоремы об изменении основных динамических величин в системах переменного состава.
13.2 Движение материальной точки переменной массы.
13.3 Уравнения движения тела переменного состава.

14. Теория импульсивных движений.
14.1 Основные понятия и аксиомы теории импульсивных движений.
14.2 Теоремы об изменении основных динамических величин при импульсивном движении.
14.3 Импульсивное движение твёрдого тела.
14.4 Соударение двух твёрдых тел.
14.5 Теоремы Карно.

15. Контрольная работа

Результаты обучения

В результате освоения дисциплины обучающийся должен:

  • Знать:
    • основные понятия и теоремы механики и вытекающие из них методы изучения движения механических систем;
  • Уметь:
    • корректно формулировать задачи в терминах теоретической механики;
    • разрабатывать механико-математические модели, адекватно отражающие основные свойства рассматриваемых явлений;
    • применять полученные знания для решения соответствующих конкретных задач;
  • Владеть:
    • навыками решения классических задач теоретической механики и математики;
    • навыками исследования задач механики и построения механико-математических моделей, адекватно описывающих разнообразные механические явления;
    • навыками практического использования методов и принципов теоретической механики при решении задач: силового расчета, определения кинематических характеристик тел при различных способах задания движения, определения закона движения материальных тел и механических систем под действием сил;
    • навыками самостоятельно овладевать новой информацией в процессе производственной и научной деятельности, используя современные образовательные и информационные технологии;

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к нашим авторам , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Содержание

Кинематика

Кинематика материальной точки

Определение скорости и ускорения точки по заданным уравнениям ее движения

Дано: Уравнения движения точки: x = 12 sin(πt/6) , см; y = 6 cos 2 (πt/6) , см.

Установить вид ее траектории и для момента времени t = 1 с найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Поступательное и вращательное движение твердого тела

Дано:
t = 2 с; r 1 = 2 см, R 1 = 4 см; r 2 = 6 см, R 2 = 8 см; r 3 = 12 см, R 3 = 16 см; s 5 = t 3 - 6t (см).

Определить в момент времени t = 2 скорости точек A, C; угловое ускорение колеса 3; ускорение точки B и ускорение рейки 4.

Кинематический анализ плоского механизма


Дано:
R 1 , R 2 , L, AB, ω 1 .
Найти: ω 2 .


Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна E. Стержни соединены с помощью цилиндрических шарниров. Точка D расположена в середине стержня AB.
Дано: ω 1 , ε 1 .
Найти: скорости V A , V B , V D и V E ; угловые скорости ω 2 , ω 3 и ω 4 ; ускорение a B ; угловое ускорение ε AB звена AB; положения мгновенных центров скоростей P 2 и P 3 звеньев 2 и 3 механизма.

Определение абсолютной скорости и абсолютного ускорения точки

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 - 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40(t - 2 t 3) - 40 (s - в сантиметрах, t - в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s < 0 точка M находится по другую сторону от точки A ).

Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .

Динамика

Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил

Груз D массой m, получив в точке A начальную скорость V 0 , движется в изогнутой трубе ABC, расположенной в вертикальной плоскости. На участке AB, длина которого l, на груз действует постоянная сила T(ее направление показано на рисунке) и сила R сопротивления среды (модуль этой силы R = μV 2 , вектор R направлен противоположно скорости V груза).

Груз, закончив движение на участке AB, в точке B трубы, не изменяя значения модуля своей скорости, переходит на участок BC. На участке BC на груз действует переменная сила F, проекция F x которой на ось x задана.

Считая груз материальной точкой, найти закон его движения на участке BC, т.е. x = f(t), где x = BD. Трением груза о трубу пренебречь.


Скачать решение задачи

Теорема об изменении кинетической энергии механической системы

Механическая система состоит из грузов 1 и 2, цилиндрического катка 3, двухступенчатых шкивов 4 и 5. Тела системы соединены нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Каток (сплошной однородный цилиндр) катится по опорной плоскости без скольжения. Радиусы ступеней шкивов 4 и 5 равны соответственно R 4 = 0,3 м, r 4 = 0,1 м, R 5 = 0,2 м, r 5 = 0,1 м. Массу каждого шкива считать равномерно распределенной по его внешнему ободу. Опорные плоскости грузов 1 и 2 шероховатые, коэффициент трения скольжения для каждого груза f = 0.1.

Под действием силы F, модуль которой изменяется по закону F = F(s), где s - перемещение точки ее приложения, система приходит в движение из состояния покоя. При движении системы на шкив 5 действуют силы сопротивления, момент которых относительно оси вращения постоянный и равен M 5 .

Определить значение угловой скорости шкива 4 в тот момент времени, когда перемещение s точки приложения силы F станет равным s 1 = 1,2 м.

Скачать решение задачи

Применение общего уравнения динамики к исследованию движения механической системы

Для механической системы определить линейное ускорение a 1 . Считать, что у блоков и катков массы распределены по наружному радиусу. Тросы и ремни считать невесомыми и нерастяжимыми; проскальзывание отсутствует. Трением качения и трением скольжения пренебречь.

Скачать решение задачи

Применение принципа Даламбера к определению реакций опор вращающегося тела

Вертикальный вал AK, вращающийся равномерно с угловой скоростью ω = 10 с -1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке D.

К валу жестко прикреплены невесомый стержень 1 длиной l 1 = 0,3 м, на свободном конце которого расположен груз массой m 1 = 4 кг, и однородный стержень 2 длиной l 2 = 0,6 м, имеющий массу m 2 = 8 кг. Оба стержня лежат в одной вертикальной плоскости. Точки прикрепления стержней к валу, а также углы α и β указаны в таблице. Размеры AB=BD=DE=EK=b, где b = 0,4 м. Груз принять за материальную точку.

Пренебрегая массой вала, определить реакции подпятника и подшипника.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»