Магнитное поле кто открыл. Магнитное поле: причины возникновения и характеристики

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).

Опыт Эрстеда

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.

Опыт Ампера
Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

Свойства магнитного поля

1. Материально, т.е. существует независимо от нас и наших знаний о нём.

2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Эти токи представляют собой движение электронов по орбитам в атоме.

Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.


7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.

Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

8. Магнитное поле характеризует вектор магнитной индукции.

Вектор магнитной индукции - векторная величина, характеризующая магнитное поле.

Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:

если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.

Магнитное поле и его характеристики

План лекции:

    Магнитное поле, его свойства и характеристики.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

    порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

    действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

    переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.

Н

Магнитное соленоида с током

Аправление линий определяется правилом правого винта. Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.

С
оленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции : индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию :

- закон Ампера

Н
аправление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.

При I = const, B=const, F = BIlsin

Если  =90 0 , F = BIl

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

 0 = 410 -7 Гн/м - магнитная постоянная,  0 = 410 -7 Н/А 2 ,

 - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

    Магнитный поток. Теорема Гаусса для магнитного потока.

Потоком вектора (магнитным потоком) через площадку dS называется скалярная величина, равная

где - проекция на направление нормали к площадке;

 - угол между векторами и .

Направленный элемент поверхности,

Поток вектора - алгебраическая величина,

если - при выходе из поверхности;

если - при входе в поверхность.

Поток вектора магнитной индукции через произвольную поверхность S равен

Для однородного магнитного поля =const,


1 Вб - магнитный поток, проходящий через плоскую поверхность площадью 1 м 2 , расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл.

Магнитный поток через поверхность S численно равен количеству магнитных силовых линий, пересекающих данную поверхность.

Поскольку линии магнитной индукции всегда замкнуты, для замкнутой поверхности число линий, входящих в поверхность (Ф 0), следовательно, полный поток магнитной индукции через замкнутую поверхность равен нулю.

- теорема Гаусса : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

Эта теорема является математическим выражением того, что в природе отсутствуют магнитные заряды, на которых начинались бы или заканчивались линии магнитной индукции.

    Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.

Магнитное поле постоянных токов различной формы было подробно исследовано фр. учеными Био и Саваром. Ими было установлено, что во всех случаях магнитная индукция в произвольной точке пропорциональна силе тока, зависит от формы, размеров проводника, расположения этой точки по отношению к проводнику и от среды.

Результаты этих опытов были обобщены фр. математиком Лапласом, который учел векторный характер магнитной индукции и высказал гипотезу о том, что индукция в каждой точке представляет собой, согласно принципу суперпозиции, векторную сумму индукций элементарных магнитных полей, создаваемых каждым участком этого проводника.

Лапласом в 1820 г. был сформулирован закон, который получил название закона Био-Савара-Лапласа: каждый элемент проводника с током создает магнитное поле, вектор индукции которого в некоторой произвольной точке К определяется по формуле:

- закон Био-Савара-Лапласа.

Из закона Био-Совара-Лапласа следует, что направление вектора совпадает с направлением векторного произведения . Такое же направление дает и правило правого винта (буравчика).

Учитывая, что ,

Элемент проводника, сонаправленный с током;

Радиус-вектор, соединяющий c точкой K;

Закон Био-Савара-Лапласа имеет практическое значение, т.к. позволяет найти в заданной точке пространства индукцию магнитного поля тока, текущего по проводнику конечный размеров и произвольной формы.

Для тока произвольной формы подобный расчет представляет собой сложную математическую задачу. Однако, если распределение тока имеет определенную симметрию, то применение принципа суперпозиции совместно с законом Био-Савара-Лапласа дает возможность относительно просто рассчитать конкретные магнитные поля.

Рассмотрим некоторые примеры.

А. Магнитное поле прямолинейного проводника с током.

    для проводника конечной длины:

    для проводника бесконечной длины:  1 = 0,  2 = 

Б. Магнитное поле в центре кругового тока:

=90 0 , sin=1,

Эрстедом в 1820 году экспериментально было обнаружено, что циркуляция по замкнутому контуру, окружающему систему макротоков, пропорциональна алгебраической сумме этих токов. Коэффициент пропорциональности зависит от выбора системы единиц и в СИ равен 1.

Ц
иркуляцией вектора называется интеграл по замкнутому контуру.

Эта формула носит название теоремы о циркуляции или закона полного тока :

циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков (или полному току), охватываемых этим контуром. его характеристики В пространстве, окружающем токи и постоянные магниты, возникает силовое поле , называемое магнитным . Наличие магнитного поля обнаруживается...

  • О реальной структуре электромагнитного поля и его характеристиках распространения в виде плоских волн.

    Статья >> Физика

    О РЕАЛЬНОЙ СТРУКТУРЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ЕГО ХАРАКТЕРИСТИКАХ РАСПРОСТРАНЕНИЯ В ВИДЕ ПЛОСКИХ ВОЛН... другие составляющие единого поля : электромагнитное поле с векторными компонентами и, электрическое поле с компонентами и, магнитное поле с компонентами...

  • Магнитное поле , цепи и индукция

    Реферат >> Физика

    ... поля ). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля ). В СИ магнитная ... , обладающими магнитным моментом. Магнитное поле и его параметры Направление магнитных линий и...

  • Магнитное поле (2)

    Реферат >> Физика

    Участок проводника АВ с током в магнитное поле перпендикулярно его магнитным линями. При показанном на рисунке... величина зависит только от магнитного поля и может служить его количественной характеристикой . Эта величина принимается...

  • Магнитные материалы (2)

    Реферат >> Экономика

    Материалы, вступающие во взаимодействие с магнитным полем , выражающееся в его изменении, а также в других... и после прекращения воздействия магнитного поля .1. Основные характеристики магнитных материаловМагнитные свойства материалов характеризуется...

  • Источниками магнитного поля являются движущиеся электрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

    Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
    За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства

    Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только
    направления вектора но и его модуляМодуль вектора магнитной индукции равен отношению максимального значения
    силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl :

    Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.

    Межпланетное магнитное поле

    Если бы межпланетное пространство было вакуумом, то единственными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы.
    На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным ветром). Концентрация этого газа 1-10 см -3 , типичные величины скоростей между 300 и 800 км/с, температура близка к 10 5 К (напомним, что температура короны 2×10 6 К).
    Солнечный ветер – истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц Солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1см 3 .

    Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.

    Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверхности Земли представляется магнитными картами трех или более магнитных элементов. На каждой из таких карт проводятся изолинии, вдоль которых данный элемент имеет постоянную величину. Линии равного склонения D называются изогонами, наклонения I – изоклинами, величины полной силы В – изодинамическими линиями или изодинами. Изомагнитные линии элементов H, Z, Х и Y называются соответственно изолиниями горизонтальной, вертикальной, северной или восточной компонент.

    Вернемся к рисунку. Там показан круг с угловым радиусом 90°– d, который описывает положение Солнца на земной поверхности. Дуга большого круга, проведенная через точку Р и геомагнитный полюс В, пересекает этот круг в точках H’ n и H’ m , которые указывают положение Солнца соответственно в моменты геомагнитного полудня и геомагнитной полуночи точки Р. Эти моменты зависят от широты точки Р. Положения Солнца в местные истинные полдень и полночь указаны точками H n и Н m соответственно. Когда d положительно (лето в северном полушарии), то утренняя половина геомагнитных суток не равна вечерней. В высоких широтах геомагнитное время может очень сильно отличаться от истинного или среднего времени в течение большей части суток.
    Говоря о времени и системах координат, скажем еще об учете эксцентричности магнитного диполя. Эксцентричный диполь медленно дрейфует наружу (к северу и к западу) с 1836 г. Экваториальную плоскость он пересел? примерно в 1862 г. Его траектория по радиальной проекции расположена в районе о-ва Гилберта в Тихом океане

    ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ТОК

    В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблюдения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.





    Доброго времени суток, сегодня вы узнаете, что такое магнитное поле и откуда оно берется.

    Каждый человек на планете хоть раз, но держал магнит в руках. Начиная от сувенирных магнитиков на холодильник, либо рабочие магниты для сбора железной пыльцы и многое другое. В детстве это была забавная игрушка которая приклеивалась к чёрному металлу, а к остальным металлам нет. Так в чём же секрет магнита и его магнитного поля .

    Что такое магнитное поле

    В какой момент магнит начинает притягивать к себе? Вокруг каждого магнита существует магнитное поле, попадая в которое, предметы начинают к нему притягиваться. Размер такого поля может различаться в зависимости от размеров магнита и его собственных свойств.

    Термин из википедии:

    Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

    От куда берётся магнитное поле

    Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах, а также магнитными моментами других частиц, хотя в заметно меньшей степени.

    Проявление магнитного поля

    Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы или проводники с . Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B.

    У каких предметов есть магнитное поле

    Мы часто не задумываемся об этом, но очень многие (если не все) окружающие нас предметы являются магнитами. Мы привыкли к тому, что магнит - это камешек с ярко выраженной силой притяжения к себе, но на самом деле сила притяжения есть практически у всего, просто она значительно ниже. Возьмем хотя бы нашу планету - мы ведь не улетаем в космос, хотя ничем за поверхность не держимся. Поле Земли значительно слабее, чем поле магнита-камешка, поэтому удерживает она нас только за счет своего огромного размера - если Вы когда-нибудь видели, как люди ходят по Луне (диаметр которой в четыре раза меньше), Вы наглядно поймете, о чем речь. Притяжение Земли основано во многом на металлических составляющих.ее коры и ядра - они имеют мощное магнитное поле. Возможно, Вы слышали о том, что рядом с большими залежами железной руды компасы перестают указывать верное направление на север - это потому, что принцип работы компаса основан на взаимодействии магнитных полей, а железная руда притягивает его стрелку.

    МАГНИТНОЕ ПОЛЕ

    Магнитное поле - это особый вид материи, невидимый и неосязаемый для человека,
    существующий независимо от нашего сознания.
    Еще в древности ученые-мыслители догадывались, что вокруг магнита что-то существует.

    Магнитная стрелка.

    Магнитная стрелка – это устройство, необходимое при изучении магнитного действия электрического тока.
    Она представляет из себя маленький магнит, установленный на острие иглы, имеет два полюса: северный и южный.Магнитная стрелка может свободно вращаться на кончике иглы.
    Северный конец магнитной стрелки всегда показывает на "север".
    Линия, соединяющая полюсы магнитной стрелки называется осью магнитной стрелки.
    Аналогичная магнитная стрелка есть в любом компасе - приборе для ориентирования на местности.

    Где возникает магнитное поле?

    Опыт Эрстеда (1820г.) - показывает, как взаимодействует проводник с током и магнитная стрелка.

    При замыкании эл цепи магнитная стрелка отклоняется от своего первоначального положения, при размыкании цепи магнитная стрелка возвращается в свое первоначальное положение.

    В пространстве вокруг проводника с током (а в общем случае вокруг любого движущегося электрического заряда) возникает магнитное поле.
    Магнитные силы этого поля действуют на стрелку и поворачивают ее.

    В общем случае можно сказать,
    что магнитное поле возникает вокруг движущихся электрических зарядов.
    Электрический ток и магнитное поле неотделимы друг от друга.

    ИНТЕРЕСНО, ЧТО...

    Многие небесные тела – планеты и звезды - обладают собственными магнитными полями.
    Однако наши ближайшие соседи- Луна, Венера и Марс - не имеют магнитного поля,
    подобного земному.
    ___

    Гильберт открыл, что, когда приближают к одному полюсу магнита кусок железа, другой полюс начинает притягивать сильнее. Эта идея была запатентована лишь через 250 лет после смерти Гильберта.

    В первой половине 90-х годов, когда появились новые грузинские монеты - лари,
    местные воры-карманники обзавелись магнитами,
    т.к. металл, из которого делались эти монеты, хорошо притягивался магнитом!

    Если взять долларовую купюру за угол и поднести к мощному магниту
    (например, подковообразному), создающему неоднородное магнитное поле, бумажка
    отклонится к одному из полюсов. Оказывается, краска долларовой купюры содержит соли железа,
    обладающие магнитными свойствами, поэтому доллар притягивается к одному из полюсов магнита.

    Если поднести к плотницкому пузырьковому уровню большой магнит, то пузырек сдвинется.
    Дело в том, что пузырьковый уровень заполнен диамагнитной жидкостью. Когда такую жидкость помещают в магнитное поле, то внутри нее создается магнитное поле противоположного направления, и она выталкивается из поля. Поэтому пузырек в жидкости приближается к магниту.

    О НИХ НАДО ЗНАТЬ!

    Организатором магнитно-компасного дела в ВМФ России был известный ученый-девиатор,
    капитан I –го ранга, автор научных трудов по теории компаса И.П. Белаванец.
    Участник кругосветного путешествия на фрегате "Паллада" и участник Крымской войны 1853-56 гг. онвпервые в мире осуществил размагничивание судна (1863 г.)
    и решил проблему установки компасов внутри железной подводной лодки.
    В 1865 г. был назначен начальником первой в стране Компасной обсерватории в Кронштадте.

    ← Вернуться

    ×
    Вступай в сообщество «page-electric.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «page-electric.ru»