Анализаторы человека (зрение, слух, обаняние, вкус, осязание). Структурные поля коры больших полушарий. Краткая характеристика ноосферы

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Вестибулярный анализатор. Участвует в регуляции положения и движения тела в пространстве, в поддержании равновесия, а также имеет отношение к регуляции мышечного тонуса.

Периферический отдел анализатора представлен рецепторами, расположенными в вестибулярном аппарате. Они возбуждаются при изменении скорости вращательного движения, прямолинейном ускорении, изменении направления силы тяжести, вибрации. Проводниковый путь - вестибулярный нерв. Мозговой отдел анализатора расположен в передних отделах височной доли КГМ. В результате возбуждения нейронов этого отдела коры возникают ощущения, дающие представления о положении тела и отдельных его частей в пространстве, способствующие сохранению равновесия и поддержанию определенной позы тела в покое и при движении.

Вестибулярный аппарат состоит из преддверия и трех полукружных каналов внутреннего уха. Полукружные каналы - это узкие ходы правильной формы, которые располагаются в трех взаимно перпендикулярных плоскостях. Верхний, или передний, канал лежит во фронтальной, задний - в сагиттальной, а наружные - в горизонтальной плоскости. Один конец каждого канала колбообразно расширен и называется ампулой

Возбуждение рецепторных клеток происходит за счет перемещения эндолимфы каналов.

Повышение активности вестибулярного анализатора возникает под влиянием изменения скорости движения тела.

Двигательный анализатор. За счет активности двигательного анализатора определяется положение тела или его отдельных частей в пространстве, степень сокращения каждой мышцы.

Периферический отдел двигательного анализатора представлен проприорецепторами, находящимися в мышцах, сухожилиях, связках и околосуставных сумках. Проводниковый отдел состоит из соответствующих чувствительных нервов и проводящих путей спинного и головного мозга. Мозговой отдел анализатора располагается в двигательной области коры головного мозга - передней центральной извилине лобной доли.

Проприорецепторами являются: мышечные веретена, находящиеся среди мышечных волокон, луковицеобразные тельца (Гольджи), расположенные в сухожилиях, пластинчатые тельца, обнаруженные в фасциях, покрывающих мышцы, в сухожилиях, связках и надкостнице. Изменение активности различных проприорецепторов происходит в момент сокращения или расслабления мышц. Мышечные веретена всегда находятся в состоянии некоторого возбуждения. Поэтому от мышечных веретен постоянно поступают нервные импульсы в центральную нервную систему, в спинной мозг. Это приводит к тому, что двигательные нервные клетки - мотонейроны спинного мозга находятся в состоянии тонуса и непрерывно посылают редкие нервные импульсы по эфферентным путям к мышечным волокнам, обеспечивая их умеренное сокращение - тонус.

Интероцептивный анализатор. Этот анализатор внутренних органов участвует в поддержании постоянства внутренней среды организма (гомеостаза).

Периферический отдел образован разнообразными интерорецепторами, диффузно расположенными во внутренних органах. Они называютсявисцерорецепторами .

Проводниковый отдел включает несколько различных по функциональному значению нервов, которые иннервируют внутренние органы, блуждающие, чревные и внутренностные тазовые.Мозговой отдел располагается в моторной и премоторной области КГМ. В отличие от внешних анализаторов мозговой отдел интероцептивного анализатора имеет значительно меньше афферентных нейронов, воспринимающих нервные импульсы от рецепторов. Поэтому здоровый человек не ощущает работу внутренних органов. Это связано с тем, что афферентные импульсы, поступающие от интерорецепторов в мозговой отдел анализатора, не преобразуются в ощущения, то есть не доходят до порога нашего сознания. Однако при возбуждении некоторых висцерорецепторов, например рецепторов мочевого пузыря и прямой кишки в случае растяжения их стенок, возникают ощущения позыва на мочеиспускание и дефекацию.

Висцерорецепторы участвуют в регуляции работы внутренних органов, осуществляют рефлекторные взаимодействия между ними.

Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами , расположенными по всему телу, за исключением головного мозга. Термин ноцицепция означает процесс восприятия повреждения.

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли . Комплекс ноцицептивной системы в равной степени сбалансирован в организме комплексомантиноцицептивной системы , обеспечивающей контроль за активностью структур, участвующих в восприятии, проведении и анализе болевых сигналов. Антиноцицептивная система обеспечивает снижение болевых ощущений внутри организма. В настоящее время установлено, что болевые сигналы, поступающие с периферии, стимулируют активность различных отделов центральной нервной системы (околопроводное серое вещество, ядра шва ствола мозга, ядра ретикулярной формации, ядра таламуса, внутренней капсулы, мозжечка, интернейроны задних рогов спинного мозга и др.) оказывающих нисходящее тормозное действие на передачу ноцицептивной афферентации в дорзальных рогах спинного мозга.

В механизмах развития анальгезии наибольшее значение придаётся серотонинергической, норадренергической, ГАМКергической и опиоидергической системам мозга. Основная из них,опиоидергическая система , образована нейронами, тело и отростки которых содержат опиоидные пептиды (бета-эндорфин, мет-энкефалин, лей-энкефалин, динорфин). Связываясь с определёнными группами специфических опиоидных рецепторов, 90% которых расположено в дорзальных рогах спинного мозга, они способствуют высвобождению различных химических веществ (гамма-аминомасляная кислота), тормозящих передачу болевых импульсов. Эта природная, естественная болеутоляющая система так же важна для нормальной жизнедеятельности, как и болесигнализирующая система. Благодаря ей, незначительные повреждения типа ушиба пальца или растяжения связок вызывают сильные болевые ощущения только на короткое время - от несколько минут до нескольких часов, не заставляя нас страдать в течение дней и недель, что случилось бы в условиях сохранения боли до полного заживления.

Анализатор (analyser) - термин, введенный И.П.Павловым для обозначения функциональной единицы, ответственной за прием и анализ сенсорной информации какой-либо одной модальности.

Совокупность нейронов разных уровней иерархии, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.

Анализатор, вместе с совокупностью специализированных структур (органов чувств), содействующих восприятию информации среды, называют сенсорной системой.

Например, слуховая система представляет собой совокупность очень сложных взаимодействующих структур, включающую в себя наружное, среднее, внутреннее ухо и совокупность нейронов, называемых анализатором.

Часто понятия «анализатор» и «сенсорная система» используют как синонимы.

Анализаторы, как и сенсорные системы, классифицируют по качеству (модальности) тех ощущений, в формировании которых они участвуют. Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, вестибулярный, двигательные анализаторы, анализаторы внутренних органов, соматосенсорный анализаторы.

Термин анализатор используется, главным образом, в странах бывшего СССР.

В анализаторе выделяют три отдела :

1. Воспринимающий орган или рецептор, предназначенный для преобразование энергии раздражения в процесс нервного возбуждения;

2. Проводник, состоящий из афферентных нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;

3. Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий.

Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов

Анализаторы являются специальными структурами организма, служащими для ввода внешней информации в мозг для последующей ее переработки.

Второстепенные термины

· рецепторы;

Структурная схема терминов

В процессе трудовой деятельности организм человека приспосабливается к изменениям окружающей среды благодаря регулирующей функции центральной нервной системы (ЦНС). Человек связан со средой с помощью анализаторов , которые состоят из рецепторов, проводящих нервных путей и мозгового конца в коре головного мозга. Мозговой конец состоит из ядра и рассеянных по коре головного мозга элементов, обеспечивающих нервные связи между отдельными анализаторами. Например, когда человек ест, то он чувствует вкус, запах пищи и ощущает её температуру.

Основная характеристика анализаторов – чувствительность .

Нижний абсолютный порог чувствительности - минимальная величина раздражителя, на который начинает реагировать анализатор.

Если раздражитель вызывает боль или нарушение деятельности анализатора - это будет верхний абсолютный порог чувствительности . Интервал от минимума до максимума определяет диапазон чувствительности (для звука от 20 Гц до 20 кГц).

У человека рецепторы настроены на следующие раздражители:

· электромагнитные колебания светового диапазона - фоторецепторы в сетчатке глаза;

· механические колебания воздуха - фонорецепторы уха;

· изменение гидростатического и осмотического давления крови - баро- и осморецепторы;

· изменение положения тела относительно вектора гравитации - рецепторы вестибулярного аппарата.

Кроме того, есть хеморецепторы (реагируют на воздействие химических веществ), терморецепторы (воспринимают температурные изменения как внутри организма, так и в окружающей среде), тактильные рецепторы и болевые.

В ответ на изменение условий окружающей среды, чтобы внешние раздражители не вызывали повреждений и гибели организма, в нём формируются компенсаторные реакции, которые могут быть: поведенческими (изменение места пребывания, отдёргивание руки от горячего или холодного) или внутренними (изменение механизма терморегуляции в ответ на изменение параметров микроклимата).

Человек обладает рядом важных специализированных периферических образований - органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей. К ним относятся органы зрения, слуха, обоняния, вкуса, осязания.

Нельзя путать понятия «органы чувств» и «рецептор». Например, глаз - это орган зрения, а сетчатка - фоторецептор, один из компонентов органа зрения. Органы чувств сами по себе не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.

Зрительный анализатор включает в себя глаз, зрительный нерв, зрительный центр в затылочной части коры головного мозга. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

0,38 - 0,455 мкм - фиолетовый цвет;

0,455 - 0,47 мкм - синий цвет;

0,47 - 0,5 мкм - голубой цвет;

0,5 - 0,55 мкм - зеленый цвет;

0,55 - 0,59 мкм - жёлтый цвет;

0,59 - 0,61 мкм - оранжевый цвет;

0,61 - 0,77 мкм - красный цвет.

Приспособление глаза к различию данного объекта в данных условиях осуществляется путём трёх процессов без участия воли человека.

Аккомодация - изменение кривизны хрусталика так, чтобы изображение предмета оказалось в плоскости сетчатки (наведение на фокус).

Конвергенция - поворот осей зрения обоих глаз так, чтобы они пересеклись на объекте различия.

Адаптация - приспособление глаза к данному уровню яркости. В период адаптации глаз работает с пониженной работоспособностью, поэтому необходимо избегать частой и глубокой переадаптации.

Слух - способность организма принимать и различать звуковые колебания слуховым анализатором в диапазоне от 16 до 20000 Гц.

Воспринимающая часть слухового анализатора - ухо, которое делится на три отдела: наружное, среднее и внутреннее. Звуковые волны, проникая в наружный слуховой проход, приводят в колебания барабанную перепонку и через цепь слуховых косточек передаются в полость улитки внутреннего уха. Колебания жидкости в канале приводит в движение волокна основной перепонки в резонанс звукам, поступающим в ухо. Колебания волокон улитки приводят в движение расположенные в них клетки кортиева органа, возникает нервный импульс, который передаётся в соответствующие отделы коры головного мозга. Порог болевых ощущений 130 - 140 дБ.

Обоняние - способность воспринимать запахи. Рецепторы расположены в слизистой оболочке верхнего и среднего носовых ходов.

Человек обладает разной степенью обоняния к различным пахучим веществам. Приятные запахи улучшают самочувствие человека, а неприятные - действуют угнетающе, вызывают отрицательные реакции вплоть до тошноты, рвоты, обморока (сероводород, бензин), способны изменять температуру кожи, вызывать отвращение к пище, приводить к подавленности и раздражительности.

Вкус - ощущение, возникающее при воздействии определённых химических веществ, растворимых в воде, на вкусовые рецепторы, расположенные на различных участках языка.

Вкус складывается из четырёх простых вкусовых ощущений: кислое, солёное, сладкое и горькое. Все остальные вариации вкуса - это комбинации из основных ощущений. Различные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка чувствителен к сладкому, края языка - к кислому, кончик и край языка - к солёному, корень языка - к горькому. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Осязание - сложное ощущение, возникающее при раздражении рецепторов кожи, наружных частей слизистых оболочек и мышечно-суставного аппарата.

Кожный анализатор воспринимает внешние механические, температурные, химические и другие раздражители кожи.

Одна из основных функций кожи - защитная. Растяжения, ушибы, давления обезвреживаются упругой жировой подстилкой и эластичностью кожи. Роговой слой предохраняет глубокие слои кожи от высыхания и весьма устойчив к различным химическим веществам. Пигмент меланин предохраняет кожу от воздействия ультрафиолетовых лучей. Неповреждённый слой кожи непроницаем для инфекций, а кожное сало и пот создают гибельную кислую среду для микробов.

Важная защитная функция кожи - участие в терморегуляции, т.к. 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре окружающей среды кожные сосуды расширяются и теплоотдача конвекцией усиливается. При низкой температуре сосуды суживаются, кожа бледнеет, теплоотдача уменьшается. Отдача тепла через кожу идёт также и потоотделением.

Секреторная функция осуществляется через сальные и потовые железы. С кожным салом и потом выделяются йод, бром, токсические вещества.

Обменная функция кожи - участие в регуляции общего обмена веществ в организме (водного, минерального).

Рецепторная функция кожи - восприятие извне и передача сигналов в ЦНС.

Виды кожной чувствительности: тактильная, болевая, температурная.

С помощью анализаторов человек получает информацию о внешнем мире, которая определяет работу функциональных систем организма и поведение человека.

Максимальные скорости передачи информации, принимаемой человеком с помощью различных органов чувств, приведены в таб. 1.6.1

Таблица 1. Характеристики органов чувств


Реакция организма человека на воздействие внешней среды зависит от уровня воздействующего раздражителя. Если этот уровень мал, то человек просто воспринимает информацию извне. При высоких уровнях появляются нежелательные биологические эффекты. Поэтому устанавливают на производстве нормируемые безопасные значения факторов в виде предельно-допустимых концентраций (ПДК) или предельно-допустимых уровней энергетического воздействия (ПДУ).

ПДУ - это тот максимальный уровень фактора, который, воздействуя на человека (изолированно или в сочетании с другими факторами) в течение рабочей смены, ежедневно, на протяжении всего трудового стажа, не вызовет у него и его потомства биологических изменений, даже скрытых и временно компенсированных, а также психологических нарушений (снижение интеллектуальных и эмоциональных способностей, умственной работоспособности, надёжности).

Выводы по теме

Нормируемые безопасные значения факторов в виде ПДК и ПДУ необходимы для исключения необратимых биологических эффектов в организме человека.

Передняя часть перепончатого лабиринта - улитковый проток, ductus cochlearis, заключенный в костной улитке, является самой существенной частью органа слуха. Ductus cochlearis начинается слепым концом в recessus cochlearis преддверия несколько кзади от ductus reuniens, соединяющего улитковый проток с sacculus. Затем ductus cochlearis проходит по всему спиральному каналу костной улитки и оканчивается слепов ее верхушке. На поперечном сечении улитковый проток имеет треугольное очертание. Одна из трех его стенок срастается с наружной стенкой костного канала улитки, другая, membrana spiralis, является продолжением костной спиральной пластинки, протягиваясь между свободным краем последней и наружной стенкой. Третья, очень тонкая стенка улиточного хода, paries vestibularis ductus cochlearis, протянута косо от спиральной пластинки к наружной стенке.

Membrana spiralis на заложенной в ней базилярной пластинке, lamina basilaris, несет аппарат, воспринимающий звуки, - спиральный орган. При посредстве ductus cochlearis scala vestibuli и scala tympani отделяются друг от друга, за исключением места в куполе улитки, где между ними имеется сообщение, называемое отверстием улитки, helicotrema. Scala vestibuli сообщается с перилимфатическим пространством преддверия, a scala tympani оканчивается слепо у окна улитки.

Спиральный орган, organon spirale, располагается вдоль всего улиткового протока на базилярной пластинке, занимая часть ее, ближайшую к lamina spiralis ossea. Базилярная пластинка, lamina basilaris, состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны (слуховые струны). Согласно известной теории Гельмгольца (1875), они являются резонаторами, обусловливающими своими колебаниями восприятие тонов различной высоты, но, по данным электронной микроскопии, эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями. Сам спиральный орган слагается из нескольких рядов эпителиальных клеток, среди которых можно различить чувствительные слуховые клетки с волосками. Он выполняет роль «обратного» микрофона, трансформирующего механические колебания в электрические.

Артерии внутреннего уха происходит из a. labyrinthi, ветви a. basilaris. Идя вместе с n. vestibulocochlearis во внутреннем слуховом проходе, a. labyrinthi разветвляется в ушном лабиринте. Вены выносят кровь из лабиринта главным образом двумя путями: v. aqueductus vestibuli, лежащая в одноименном канале вместе с ductus endolymphaticus, собирает кровь из utriculus и полукружных каналов и вливается в sinus petrosus superior, v. canaliculi cochleae, проходящая вместе с ductus perilymphaticus в канале водопровода улитки, несет кровь преимущественно от улитки, а также из преддверия от sacculus и utriculus и впадает в v. jugularis interna.

Пути проведения звука.

С функциональной точки зрения орган слуха (периферическая часть слухового анализатора) делится на две части:

1) звукопроводящий аппарат - наружное и среднее ухо, а также некоторые элементы (перилимфа и эндолимфа) внутреннего уха;2) звуковоспринимающий аппарат - внутреннее ухо.

Воздушные волны, собираемые ушной раковиной, направляются в наружный слуховой проход, ударяются о барабанную перепонку и вызывают ее вибрацию. Вибрация барабанной перепонки, степень натяжения которой регулируется сокращением m. tensor tympani (иннервация из n. trigeminus), приводит в движение сращенную с ней рукоятку молоточка. Молоточек соответственно движет наковальню, а наковальня - стремя, которое вставлено в fenestra vestibuli, ведущее во внутреннее ухо. Величина смещения стремени в окне преддверия регулируется сокращением m. stapedius (иннервация от n. stapedius из n. facialis). Таким образом цепь косточек, соединенная подвижно, передает колебательные движения барабанной перепонки направленно к окну преддверия.

Движение стремени в окне преддверия кнутри вызывает перемещения лабиринтной жидкости, которая выпячивает мембрану окна улитки кнаружи. Эти перемещения необходимы для функционирования высокочувствительных элементов спирального органа. Первой перемещается перилимфа преддверия; ее колебания по scala vestibuli восходят до вершины улитки, через helicotrema передаются перилимфе в scala tympani, по ней спускаются к membrana tympani secundaria, закрывающей окно улитки, являющейся слабым местом в костной стенке внутреннего уха, и как бы возвращаются к барабанной полости. С перилимфы звуковая вибрация передается эндолимфе, а через нее спиральному органу. Таким образом, колебания воздуха в наружном и среднем ухе благодаря системе слуховых косточек барабанной полости переходят в колебания жидкости перепончатого лабиринта, вызывающие раздражения специальных слуховых волосковых клеток спирального органа, составляющих рецептор слухового анализатора.

В рецепторе, являющемся как бы «обратным» микрофоном, механические колебания жидкости (эндолимфы) превращаются в электрические, характеризующие нервный процесс, распространяющийся по кондуктору до мозговой коры. Кондуктор слухового анализатора составляют слуховые проводящие пути, состоящие из ряда звеньев.

Клеточное тело первого нейрона лежит в ganglion spirale. Периферический отросток биполярных клеток его в спиральном органе начинается рецепторами, а центральный идет в составе pars cochlearis n. vestibulocochlearis до его ядер, nucleus cochlearis dorsalis et ventralis, заложенных в области ромбовидной ямки. Различные части слухового нерва проводят различные по частоте колебаний звуки.

В названных ядрах помещаются тела вторых нейронов, аксоны которых образуют центральный слуховой путь; последний в области заднего ядра трапециевидного тела перекрещивается с соименным путем противоположной стороны, образуя латеральную петлю, lemniscus lateralis. Волокна центрального слухового пути, идущие из вентрального ядра, образуют трапециевидное тело и, пройдя мост, входят в состав lemniscus lateralis противоположной стороны. Волокна центрального пути, гисходящие из дорсального ядра, идут по дну IV желудочка в виде striae medullares ventriculi quarti, проникают в formatio reticularis моста и вместе с волокнами трапециевидного тела вступают в состав латеральной петли противоположной стороны. Lemniscus lateralis заканчивается частью в нижних холмиках крыши среднего мозга, частью в corpus geniculatum mediale, где помещаются третьи нейроны.

Нижние холмики крыши среднего мозга служат рефлекторным центром для слуховых импульсов. От них идет к спинному мозгу tractus tectospinalis, через посредство которого совершаются двигательные реакции на слуховые раздражения, поступающие в средний мозг. Рефлекторные ответы на слуховые импульсы могут быть получены и из других промежуточных слуховых ядер - ядер трапециевидного тела и латеральной петли, связанных короткими путями с двигательными ядрами среднего мозга, моста и продолговатого мозга.

Оканчиваясь в образованиях, имеющих отношение к слуху (нижние холмики и corpus geniculatum mediale), слуховые волокна и их коллатерали присоединяются, помимо этого, к медиальному продольному пучку, при помощи которого они приходят в связь с ядрами глазодвигательных мышц и с двигательными ядрами других черепных нервов и спинного мозга. Этими связями объясняются рефлекторные ответы на слуховые раздражения.

Нижние холмики крыши среднего мозга не имеют центростремительных связей с корой. В corpus geniculatum mediale лежат клеточные тела последних нейронов, аксоны которых в составе внутренней капсулы достигают коры височной доли большого мозга. Корковый конец слухового анализатора находится в gyrus temporalis superior (поле 41). Здесь воздушные волны наружного уха, вызывающие движение слуховых косточек в среднем ухе и колебания жидкости во внутреннем ухе и превращающиеся далее в рецепторе в нервные импульсы, переданные по кондуктору в мозговую кору, воспринимаются в виде звуковых ощущений. Следовательно, благодаря слуховому анализатору колебания воздуха, т. е. объективное явление существующего независимо от нашего сознания окружающего нас реального мира, отражается в нашем сознании в виде субъективно воспринимаемых образов, т. е. звуковых ощущений.

Это яркий пример справедливости ленинской теории отражения, согласно которой объективно реальный мир отражается в нашем сознании в форме субъективных образов. Эта материалистическая теория разоблачает субъективный идеализм, который, наоборот, на первое место ставит наши ощущения.

Благодаря слуховому анализатору различные звуковые раздражители, воспринимаемые в нашем мозге в виде звуковых ощущений и комплексов ощущений - восприятий, становятся сигналами (первыми сигналами) жизненно важных явлений окружающей среды. Это составляет первую сигнальную систему действительности (И. П. Павлов), т. е. конкретно-наглядное мышление, свойственное и животным. У человека имеется способность к абстрактному, отвлеченному мышлению при помощи слова, которое сигнализирует о звуковых ощущениях, являющихся первыми сигналами, и потому является сигналом сигналов (вторым сигналом). Отсюда устная речь составляет вторую сигнальную систему действительности, свойственную только человеку.

Лекция №4

Тема: Физиологические характеристики человека .

План лекции:

    Общая характеристика анализаторов. Функциональная схема и

основные параметры анализаторов.

    Характеристика зрительного анализатора.

    Характеристика слухового анализатора.

    Характеристика кожного анализатора.

    Кинестетический анализатор.

    Обонятельный анализатор.

      Алексеев С.В., Усенко В.Р. Гигиена труда. – М.: Медицина, 1998. – 244 с

      Безопасность жизнедеятельности: Учебник для студентов средних спец. Учеб. заведений / С.В. Белов, В.А. Девисилов, А.Ф. Козьяков и др. / под общ. ред. С.В. Белова. – М.: Высш. шк., 2003. – 357с.

      Безопасность жизнедеятельности. Под ред. проф. Э. А. Арустамова. М.: «Дашков и К°», 2003. -258 с.

      Беляков Г.И. Практикум по охране труда. – М.: Колос, 1999. – 192с.

      Хван Т.А., Хван П.А. Безопасность жизнедеятельности. Серия «Учебники и учебные пособия». Ростов н/Д: «Феникс», 2001. – 352 с.

    6. Чусов Ю.Н. Физиология человека. – М.: Просвещение, 1981. – 193 с.

    1. Общая характеристика анализаторов. Функциональная схема и основные параметры анализаторов.

    Целесообразная и безопасная деятельность человека основывается на постоянном получении и анализе информации о внешней среде и о своем внутреннем состоянии для своевременного приспособительного реагирования. Все раздражения, действующие на организм извне и возникающие в нем самом, человек воспринимает при помощи органов чувств, включающих органы зрения, слуха, гравитации, обоняния, вкуса, осязания. Получение от органов чувств информации о состоянии и изменении внешней и внутренней среды и ее переработку осуществляют анализаторы.

    Анализаторы – функциональные сенсорные системы, обеспечивающие качественный и количественный анализ воздействующих на организм раздражителей. В структуре каждого анализатора можно выделить три отдела:

    периферический отдел – рецепторы, располагающиеся чаще всего в органах чувств, воспринимающие раздражения и преобразующие их в нервные импульсы;

    проводниковый отдел – нервные пути, по которым нервные импульсы передаются в кору больших полушарий головного мозга;

    центральный отдел (нервные центры) – это чувствительные зоны в коре головного мозга, преобразующие полученное раздражение в определенное ощущение.

    Основной характеристикой анализаторов является чувствительность – свойство живого организма воспринимать раздражения, обусловленные действием раздражителей из внешней или внутренней среды. Чувствительность характеризуется величиной порога ощущения . Различают абсолютный и дифференциальный пороги ощущения.

    Абсолютный порог ощущения – это минимальная сила раздражения, при которой возникает ощущение.

    Дифференциальный (разностный) порог ощущения – это минимальная величина, на которую нужно усилить раздражитель, чтобы получить минимальное изменение ощущения.

    Для каждого анализатора характерна минимальная длительность воздействия раздражителя, необходимая для возникновения ощущения. Время от начала воздействия до появления ощущения, называют латентным периодом . Его величина для различных анализаторов составляет от 0,09 до1,6с.

    В упрощенном виде схемы анализаторов представлены в таблице 1.

    2. Характеристика зрительного анализатора.

    Человек получает более 80 % всей информации о внешней среде благодаря освещению через зрительный анализатор. Под воздействием потока лучистой энергии возникают световые и цветовые ощущения, уровень которых зависит от яркости и освещенности рассматриваемых предметов, объектов, окружающих поверхностей.

    Зрительный анализатор , как и любой другой анализатор, состоит из трех функциональных частей. Периферическую часть в зрительном анализаторе представляет собой важнейший из органов чувств – орган зрения – глаз .

    Глаз состоит из глазного яблока, имеющего почти шаровидную форму, глазодвигательных мышц, век, слезного аппарата (рис. 1).

    Рис. 1. Схема строения глаза человека: 1 – фиброзная оболочка; 2 – роговица; 3 зрачок; 4 – радужная оболочка; 5 – хрусталик; 6 – цилиарная мышца; 7 – стекловидное тело; 8 – сетчатка; 9 – зрительный нерв; 10 – сосудистая оболочка; 11 – желтое пятно; 12 – центральная ямка

    Свет попадает в глаз через прозрачную часть фиброзной оболочки 1 – роговицу 2, зрачок 3 – отверстие переменной величины в центре радужной оболочки 4; далее свет проходит через хрусталик 5, имеющий форму двояковыпуклой линзы, стекловидное тело 7 и затем попадает на светочувствительные фоторецепторные клетки сетчатки 8. Цилиарная мышца 6 регулирует кривизну поверхности хрусталика, обеспечивая способность глаза к аккомодации.

    Аккомодация – приспособление к ясному видению предметов, находящихся на различных расстояниях от глаза. На рисунке нижняя часть хруста-лика показана в состоянии покоя, верхняя – при аккомодации. Аккомодация включает два процесса, каждый из которых будет рассмотрен отдельно.

    Рефлекторное изменение диаметра зрачка . При изменении интенсивности освещения рефлекторное сокращение кольцевых и радиальных мышц глаза изменяет диаметр (просвет) зрачка. Благодаря этому зрачок обладает способностью регулировать количество света, попадающего на сетчатку, предотвращая ее повреждение. Чем ярче свет, тем уже зрачок, тем меньше света попадает на сетчатку, и наоборот. Когда яркость уменьшается – зрачок увеличивается. Предельные размеры зрачка 2 и 8 мм можно наблюдать солнечным днем и темной ночью, соответственно.

    Чувствительность глаза к свету непостоянна. Она зависит от степени освещенности. Известно, что если перейти из ярко освещенной комнаты в темное помещение, то в начальный момент глаза ничего не различают. Постепенно чувствительность глаза повышается, так как уменьшается интенсивность распада светочувствительных веществ и способность глаза различать предметы восстанавливается. После длительного пребывания в темноте (около 1 часа) чувствительность глаза становится максимальной. Если теперь выйти на свет, то в первый момент глаза также перестают что-либо видеть: восстановление светочувствительных веществ отстает от очень интенсивного их распада. Через 1 – 2 минуты чувствительность глаза понижается и зрение восстанавливается. Свойство глаза приспосабливаться к уровню освещения, изменяя свою чувствительность, называется адаптацией.

    Основными физиологическими показателями зрительного анализатора являются контрастная чувствительность, острота зрения, поле зрения, скорость различения, устойчивость ясного видения, цветоразличение.

    Контрастная чувствительность – способность зрительного анализатора различать предмет на фоне других. Для оценки функционального состояния зрительного анализатора используется показатель, называемый порогом контрастной чувствительности.

    Порог контрастной чувствительности – наименьшая воспринимаемая разность яркостей рассматриваемого объекта и фона (поверхности, прилегающей к объекту).

    Острота зрения – это способность раздельного восприятия двух точек или объектов. При нормальной остроте зрения человек может различать объект с угловым размером 1 мин (минимальный угол зрения).

    Скорость различения – способность зрительного анализатора различать детали объектов за минимальное время наблюдения.

    Поле зрения состоит из центральной области бинокулярного зрения, обеспечивающей стереоскопичность восприятия. Границы поле зрения зависят от анатомических факторов: размера и формы носа, век, орбит и т. д. По горизонтали поле зрения охватывает 120 – 180°, по вертикали вверх – 55 – 60° и вниз – 65 – 72°.

    Устойчивость ясного видения – способность зрительного анализатора отчетливо различать объект в течение заданного времени. Чем продолжительнее период ясного видения, тем выше производительность зрительного анализатора.

    Цветовосприятие (цветовое зрение) – способность зрительного анализатора различать цвета предметов. Возникновение того или иного цветового ощущения: от фиолетового до красных цветов зависит от длины волны видимого излучения. Нарушение цветового зрения дальтонизм (цветовая слепота) – генетическая аномалия.

    3. Характеристика слухового анализатора.

    Слуховой анализатор включает в себя ухо, нервы и слуховые центры, расположенные в коре головного мозга

    Человеческое ухо представляет собой орган слуха, в котором располагается периферический отдел слухового анализатора, содержащий механорецепторы, чувствительные к звукам, к силе тяжести и к перемещению в пространстве. Большинство структур уха предназначены для восприятия, усиления и преобразования звуковой энергии в электрические импульсы, которые, поступая в слуховые зоны мозга, вызывают слуховое ощущение.

    Орган слуха человека (рис. 2) включает наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины 1, улавливающей и направляющей звуковые волны в наружный слуховой проход 2. Слуховой проход довольно широкий, но примерно в середине он значительно суживается. Это обстоятельство следует иметь в виду при извлечении из уха инородного тела. Кожа слухового прохода покрыта тонкими волосками. В просвет прохода открываются протоки желез, вырабатывающие ушную серу. Волоски и ушная сера выполняют защитную функцию – предохраняют слуховой проход от проникновения в него пыли, насекомых, микроорганизмов.

    За слуховым проходом, на границе его со средним ухом находится тонкая упругая барабанная перепонка 3. За ней располагается полость среднего уха 4. Внутри этой полости имеются три слуховые косточки – молоточек 6, наковальня 7 и стремечко 8. Полость среднего уха сообщается с полостью рта через евстахиеву (слуховую) трубу 5. Евстахиева труба служит для выравнивания давления в полости среднего уха с наружным. Если возникает разность давлений, то нарушается острота слуха, а если разность давлений окажется очень большой, то может произойти разрыв барабанной перепонки. Чтобы этого не произошло, необходимо открыть рот и сделать несколько глотательных движений.

    Во внутреннем ухе располагается спиралевидной формы улитка 9. Внутри в одном из каналов улитки, заполненных жидкостью, расположена основная мембрана, на которой находится звуковоспринимающий аппарат – кортиев орган . Он состоит из 3 – 4 рядов рецепторных клеток, общее число которых достигает 24000.

    Рис. 2. Орган слуха человека: а – наружное ухо; б – среднее ухо; в – внутреннее ухо; 1 – ушная раковина; 2 – наружный слуховой проход; 3 – барабанная перепонка; 4 – полость среднего уха; 5 – евстахиева труба; 6 – молоточек; 7 – наковальня; 8 – стремечко; 9 – улитка; 10 – вестибулярный аппарат; 11 – преддверие; 12 – полукружные каналы; 13 – слуховой нерв; 14 – нерв преддверия.

    Звуковые волны, улавливаемые ушной раковиной, вызывают колебания барабанной перепонки и затем через систему слуховых косточек и возникающих в улитке колебаний жидкости передаются воспринимающим фоно-рецепторным клеткам кортиева органа , вызывая их раздражение. Слуховое раздражение, преобразованное в нервное возбуждение (нервный импульс), по слуховому нерву 13 попадает в кору головного мозга, где происходит высший анализ звуков – возникают слуховые ощущения.

    Одна из основных характеристик слуха заключается в восприятии звуков определенного диапазона частот . Ухо человека способно слышать звуки с частотой колебаний от 16 до 20000 Гц.

    Важной характеристикой слуха является острота слуха или чувствительность слуха . Чувствительность слуха можно оценивать абсолютным пороговым звуковым давлением (Па), вызывающим слуховое ощущение. Минимальное звуковое давление, которое воспринимается ухом человека, называется порогом слышимости . Величина порога слышимости зависит от частоты звука. На практике для удобства оценки восприятия звуков принято использовать относительную величину: уровень звукового давления, измеряемый в децибелах (дБ). Порог слышимости на частоте 1000 Гц, принятой в качестве стандартной частоты сравнения в акустике, примерно соответствует порогу чувствительности уха человека и равен 0 дБ.

    При высоких уровнях звукового давления (120 – 130 дБ) возможно появление неприятного ощущения, а затем и боли в органах слуха. Наименьшая величина звукового давления, при которой возникают болевые ощущения, называется порогом болевого ощущения . В диапазоне слышимых частот этот порог больше порога слышимости в среднем на 80 – 100 дБ.

    Существенной характеристикой слуха является способность дифференцировать звуки различной интенсивности по ощущению их громкости. Минимальная величина ощущаемого различия звуков по их интенсивности называется дифференциальным порогом восприятия силы звука. Для звуков средней части звукового спектра эта величина составляет около 0,7 – 1,0 дБ.

    Поскольку слух является средством общения людей, особое значение в его оценке имеет способность восприятия речи или речевой слух. Особенно важно в оценке слуха сопоставление показателей речевого и тонального слуха, что дает представление о состоянии различных отделов слухового анализатора. Большое значение имеет функция пространственного слуха, заключающаяся в определении положения и перемещения источника звука.

    4. Характеристика кожного анализатора.

    Одной из важнейших функций кожи является рецепторная функция. В коже заложено огромное количество рецепторов, воспринимающих различные внешние раздражения: боль, тепло, холод, прикосновение. На 1 см 2 кожи располагается приблизительно 200 болевых, 20 холодовых, 5 тепловых и 25 воспринимающих давление рецепторов, которые представляют собой периферический отдел кожного анализатора.

    Болевые ощущения вызывают оборонительные рефлексы, в частности рефлекс удаления от раздражителя. Болевая чувствительность, являясь сигналом, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.

    Механические воздействия на кожные покровы не вызывающие боли воспринимаются тактильным анализатором . Тактильная чувствительность является составной частью осязания. Чувствительность кожи различных участков тела к воздействию тактильных раздражителей различна, т.е. они имеют разные пороги тактильной чувствительности, например, минимальный порог ощущения для кончиков пальцев кистей рук – 3 мг/мм 2 , тыльной стороны кисти – 12 мг/мм 2 , для кожи в области пятки – 250 мг/мм 2 .

    Тактильная чувствительность совместно с другими видами чувствительности кожи может в некоторой степени компенсировать отсутствие или недостаточность функции других органов чувств.

    Температурная чувствительность кожи обеспечивается холодовыми терморецепторами с максимумом восприятия температуры 25 – 30 °С и тепловыми – с максимумом восприятия 40 °С.

    Наибольшая плотность терморецепторов в коже лица, меньше их в коже туловища, еще меньше в коже конечностей. Передавая информацию об изменениях температуры окружающей среды, терморецепторы играют важнейшую роль в процессах терморегуляции, обеспечивающих постоянство температуры тела.

    5. Кинестетический анализатор .

    Двигательный или кинестетический анализатор – это физиологическая система, передающая и обрабатывающая информацию от рецепторов скелетно-мышечного аппарата, а также участвующая в организации и осуществлении координированных движений. Двигательная активность способствует адаптации организма человека к изменениям окружающей среды (климата, временных поясов, условий труда и т. д.).

    Различные виды движений характеризуются динамикой физиологических процессов, которая при их оптимизации обеспечивает наилучшее сохранение жизнедеятельности организма.

    Чрезмерная мобилизация функциональной активности, не обеспечиваемая необходимым уровнем координации и активности восстановительных процессов в ходе работы и в течение длительного времени после ее окончания, характеризуется как гипердинамия . Это состояние возникает при чрезмерном занятии спортом или тяжелым физическим трудом, при длительных эмоциональных стрессах. Гипердинамия развивается в результате неадекватной для функционального состояния организма мобилизации функций нервно-мышечной, сердечно-сосудистой, дыхательной и других систем и может сопровождаться рядом болезненных симптомов.

    Малая двигательная активность является причиной гиподинамии . Это состояние характеризуется снижением деятельности всех органов, систем и расстройством взаимосвязи в организме, нарушается обмен веществ, снижается надежность и устойчивость организма человека при значительных функциональных нагрузках и действии неблагоприятных факторов окружающей среды.

    Таким образом, все это позволяет говорить о двигательной активности человека как о процессе, во многом способствующем сохранению его здоровья и трудовой активности.

    6. Обонятельный анализатор.

    Вид чувствительности, направленный на восприятие различных пахучих веществ с помощью обонятельного анализатора, называется обонянием . Обоняние имеет большое значение в обеспечении безопасности, так как люди с нарушением обоняния чаще подвергаются риску отравления. Для многих пахучих веществ определен порог восприятия , т.е. минимальная величина концентрации вещества, способная вызвать реакцию органа обоняния.

    Основными характеристиками органа обоняния являются:

      абсолютный порог восприятия – концентрация вещества, при которой человек ощущает запах, но не узнает его (даже для знакомых запахов);

      порог узнавания – минимальная концентрация вещества, при которой за-пах не только ощущается, но и узнается.

    Разница между порогом восприятия и порогом узнавания для большинства веществ составляет один порядок: 10 – 100 мг/м3.

    по их характеру называются приятными, неприятными, скверными, неопределенными, отвратительными, удушливыми и др.;

    по интенсивности их делят на слабые, умеренные, выраженные, сильные и очень сильные;

    по раздражающему действию – на нераздражающие, слабораздражающие, невыносимые.

    Изменения обоняния могут протекать по типу:

    гипосмия – снижение остроты обоняния, при этом порог восприятия запаха возрастает;

    аносмия – потеря восприятия запахов;

    гиперосмия и оксиосмия – обострение обоняния, при этом порог восприятия запаха снижается.

    Гипосмия может быть полной или частичной. Профессиональная гипосмия может быть функциональной (адаптация к запаху, утомление органов обоняния), токсической (после вдыхания свинца, ртути, хлора и др.), респираторной (после вдыхания пыли), воспалительной, постинфекционной, посттравматической. Изменения обоняния могут быть как периферического, так и центрального происхождения, в зависимости от того, какое звено обонятельного анализатора повреждено.

    7. Вкусовой анализатор .

    Вкус – ощущение, возникающее при воздействии раздражителей на специфические рецепторы, расположенные на различных участках языка.

    Вкусовое ощущение складывается из восприятия кислого, соленого, сладкого и горького; вариации вкуса являются результатом комбинации основных перечисленных ощущений. Разные участки языка имеют неодинаковую чувствительность к вкусовым веществам: кончик языка более чувствителен к сладкому , края языка – к кислому , кончик и края – к соленому и корень языка наиболее чувствителен к горькому .

    Механизм восприятия вкусовых веществ связывают со специфическими химическими реакциями на границе «вещество – вкусовой рецептор ». Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определенных вкусовых веществ. Возбуждение от вкусовых рецепторов передается в ЦНС по специфическим проводящим путям.

    Анализаторы - комплексы структур нервной системы, осуществляющие восприятие и анализ информации о явлениях, происходящих в окружающей организм среде и (или) внутри самого организма и формирующие специфические для данного анализатора ощущения. Термин «анализаторы» ввел в физиологическую науку И.П. Павлов. В анализаторах выделяют периферический (рецепторный) отдел, проводниковую часть и центральный (корковый) отдел. Периферический отдел представлен специализированными рецепторными образованиями. Проводниковую часть составляют афферентные нервные волокна, подкорковые образования (различные ядра ствола мозга, таламус, ретикулярная формация, структуры лимбической системы и мозжечка), а также их связи друг с другом и проекции к соответствующим областям коры мозг. Центральный отдел анализаторов включает области коры головного мозга, к которым поступают нервные импульсы, идущие от рецепторных отделов анализаторы, - так называемые проекционные области анализаторов.

    Первичная обработка информации в анализаторах осуществляется рецепторами, которые с высокой специфичностью воспринимают действие определенных раздражителей и преобразуют энергию раздражения в процесс нервного возбуждения, распространяющийся по нервному волокну в виде нервного импульса.
    Нервный импульс, или сигнал, идущий с периферии, поступает к нейронам таламических ядер и других подкорковых образований. В свою очередь, подкорковые нейроны передают импульс еще большему количеству нейронов коры головного мозга. Таким образом, к корковым нейронам адресуются сигналы от различных видов рецепторов. Часто такая информация разной модальности поступает на одни и те же клетки, которых особенно много в ассоциативных зонах коры мозга; за счет нисходящих влияний головного мозга осуществляется регуляция функционального состояния и чувствительности периферических и проводниковых отделов соответствующих анализаторам. Следует отметить, что большинство явлений внешней и внутренней среды как раздражители воздействуют на рецепторы нескольких анализаторов одновременно. Поэтому в результате анализа и синтеза всей афферентной информации, происходящих в коре головного мозга, происходит целостное восприятие тех или иных явлений.
    В связи с тем, что чувствительность анализатора, а также функциональное состояние проводниковых частей тех или иных Анализаторов определяются нисходящими корковыми влияниями, организм имеет возможность активно отбирать наиболее адекватную данной ситуации сенсорную информацию. Это выражается «всматриванием», «вслушиванием» и т.д., что зависит от направленного снижения порога чувствительности к зрительным раздражителям в первом случае, к слуховым раздражителям - во втором.

    Различают внешние и внутренние анализаторы. Внешние, или экстероцептивные, анализаторы. осуществляют восприятие и анализ информации о явлениях окружающей среды. К ним относят зрительный, слуховой, обонятельный, тактильный, вкусовой и другие анализаторы. Внутренние анализаторы обеспечивают восприятие и анализ информации о состоянии внутренних органов.
    Одним из основных внутренних анализаторы является двигательный, воспринимающий информацию о состоянии скелетно-мышечного аппарата и участвующий в организации и координации движений. Двигательный анализатор тесно взаимодействует со зрительным, слуховым, тактильным, а также с вестибулярным анализатором. Вместе с тем вестибулярный анализатор занимает промежуточное положение между внешними и внутреннимиАнализаторы, поскольку его рецепторы расположены внутри организма (во внутреннем ухе), а раздражителями являются внешние факторы (ускорения). Реализация основных функций вестибулярного анализатора осуществляется во взаимодействии с двигательным, зрительным и тактильным анализатором.

    Патология анализаторов разнообразна и зависит от патологии тканей и органов, с которыми они связаны, а также от уровня поражения структур, входящих в состав анализатора. В частности, поражения собственно рецептирующих структур носят обычно необратимый характер и, как правило, не излечимы (например, повреждение сетчатки глаза приводит к резкому ухудшению зрения вплоть до слепоты). Поражения вспомогательных структур обратимы и могут поддаваться лечению (например, соответствующая коррекция при ухудшении деятельности звукопроводящих структур органа слуха). Повреждения центральных отделов анализатора проявляются в зависимости от конкретной локализации поражения.

    Для изучения анализатора применяют различные методы нейрофизиологии, электрофизиологии, морфологии и др.

    Анализаторы человека – это функциональные нервные образования, обеспечивающие приём и последующую переработку информации, полученную из внутренней среды и наружного мира. Анализаторы человека, образующие единство со специализированными структурами — органами чувств, способствующими в получении информации, называют сенсорной системой.

    Сенсорные анализаторы человека связывают индивида со средой с помощью проводящих нервных путей, рецепторов и расположенного в коре головного мозга мозгового конца. Выделяют внешние и внутренние анализаторы человека. К внешним относят зрительный, тактильный, обонятельный, слуховой, вкусовой анализатор. Внутренние анализаторы человека отвечают за состояние и положение внутренних органов.

    Виды анализаторов человека

    Сенсорные анализаторы человека подразделяются на виды в зависимости от чувствительности рецепторов, природы раздражителя, характера ощущений, скорости адаптации, назначения и так далее.

    Внешние анализаторы человека получают данные от мира и в дальнейшем их анализируют. Они воспринимаются человеком субъективно под видом ощущений.

    Выделяют такие виды внешних анализаторов человека: зрительный, обонятельный, слуховой, вкусовой, осязательный и температурный.

    Внутренние анализаторы человека воспринимают и подвергают анализу видоизменения во внутренней среде, показателях гомеостазиса. Если показатели организма в норме, то они не воспринимаются человеком. Только отдельные изменения организма способны вызвать у человека ощущения, как например, жажду, голод, которые основываются на биологических потребностях. Для их удовлетворения и возобновления стабильности организма включаются определенные поведенческие реакции. Импульсы участвуют в регуляции функционирования внутренних органов, они обеспечивают приспособление организма к его разнообразной жизнедеятельности.

    Анализаторы, отвечающие за положение тела, подвергают анализу данные о нахождении и положении тела. К анализаторам, отвечающим за положение тела, относят вестибулярный аппарат и двигательный (кинестетический).

    Болевой анализатор человека представляет особенную важность для организма. Болевые сигналы организма доставляют человеку сигналы о том, что возникают повреждающие действия.

    Характеристика анализаторов человека

    Основой в характеристике анализатора является его чувствительность, которая характеризует порог ощущения человека. Выделяют два вида порогов ощущения – это абсолютный и дифференциальный.

    Абсолютный порог ощущения характеризует минимальную силу раздражения, которая вызывает определенную реакцию.

    Дифференциальный порог ощущения описывает между двумя величинами раздражителя минимальное различие, едва дающее заметное различие ощущений.

    Величина ощущений меняется гораздо медленнее, чем сила раздражителя.

    Существует еще понятие латентного периода, которое описывает время от начала воздействия до возникновения ощущений.

    Зрительный анализатор человека помогает человеку принимать до 90% данных об окружающем мире. Воспринимающим органом является глаз, который имеет очень высокую чувствительность. Изменения зрачка в размерах позволяют человеку менять чувствительность многократно. Сетчатка глаза обладает очень высокой восприимчивостью от 380 до 760 нанометров (миллиардных долей метра).

    Бывают ситуации, при которых приходится учитывать время, необходимое для адаптации глаз в пространстве. Световая адаптация – это привыкание анализатора к сильной освещенности. В среднем адаптация занимает от двух минут до десяти, в зависимости от яркости света.

    Темновая адаптация – это адаптация зрительного анализатора к плохой освещенности, в некоторых случаях она происходит по истечении некоторого времени. Во время такой зрительной адаптации человек становится уязвимым и пребывает в состоянии опасности. Поэтому в таких ситуациях необходимо быть очень внимательными.

    Зрительный анализатор человека характеризуется остротой – наименьшим углом, под которым можно воспринять две точки, как раздельные. На остроту влияет контрастность, освещенность и другие факторы.

    Ощущение, возбуждающееся световым сигналом, сберегается в течение 0, 3 секунд за счет инерции. Инерция зрительного анализатора формирует стробоскопический эффект, который выражается в ощущениях непрерывности движений, когда частота смены изображений составляет десять раз в секунду. Это создает оптические иллюзии.

    Зрительный анализатор человека состоит из светочувствительных образований – палочек и колбочек. С помощью палочек человек способен видеть ночь, темноту, но такое зрение бесцветное. В свою очередь колбочки обеспечивают цветное изображение.

    Каждый человек должен понимать всю серьезность в отклонениях в восприятии цвета, поскольку они могут привести к неблагоприятным последствиям. Среди таких отклонений чаще всего встречаются: дальтонизм, цветовая слепота, гемералопия. Дальтоники не различают зеленый и красный цвета, иногда фиолетовый и желтый, которые им кажутся серыми. Человек, у которого цветовая слепота, видит все цвета серыми. У индивида страдающего гемералопией отсутствует способность к видению при сумрачном освещении.

    Тактильный анализатор человека обеспечивает ему защитно-оборонительную функцию. Воспринимающим органом является кожа, она обороняет организм от попадания на нее химических веществ, служит защитным барьером в ситуации прикосновения кожи тела с электрическим током, является регулятором температуры тела, оберегает человека от переохлаждения или перегрева.

    Если у человека нарушается от 30 до 50 процентов кожного покрова и не предоставляется медицинская помощь, то он в скором времени погибает.

    Кожа человека состоит из 500 тысяч точек, воспринимающих ощущения действия на кожную поверхность механических стимулов, боли, тепла, холода.

    Особенность тактильного анализатора заключается в его высокой приспособляемости к пространственной локализации. Это выражается в исчезновении чувства прикосновения. кожного покрова зависит от интенсивности раздражителя, она может происходить на протяжении от двух до двадцати секунд.

    Анализатор ощущения температурной чувствительности свойствен организмам, имеющим постоянную температуру тела. На человеческой коже размещаются два вида температурных анализаторов: анализаторы, реагирующие на холод и реагирующие – на тепло. Кожа человека состоит из 30 тысяч точек тепла и 250 точек, воспринимающих холод. При восприятии тепла и холода существуют различные пороги чувствительности, тепловые точки реагируют на изменения температуры в 0,2°С; точки, воспринимающие холод на 0,4°С. Температура начинает ощущаться уже за одну секунду ее воздействия на тело. С помощью анализаторов температурной чувствительности сохраняется неизменная температура тела.

    Анализатор обоняния человека представлен органом ощущения – носом. Существует приблизительно 60 миллионов клеток, которые размещаются в слизистой оболочке носа. Эти клетки покрыты волосками, длиной 3-4 нанометра, они являются защитным барьером. Нервные волокна, уходящие от обонятельных клеток, отсылают сигналы о воспринятых запахах в центры мозга. Если человек ощущает запах вещества, опасного для его здоровья (нашатырный спирт, эфир, хлороформ и другие), он рефлекторно замедляет или задерживает дыхание.

    Анализатор восприятия вкуса представлен специальными клетками, находящимися на слизистой оболочке языка. Ощущения вкуса могут быть: сладким, кислым, солёным и горьким, также их комбинации.

    Ощущения вкуса играют защитную роль в предупреждении попадания опасного для здоровья или жизни вещества в организм. Индивидуальные восприятия вкуса могут варьироваться до 20%. Чтобы обезопасить себя от попадания вредных веществ в организм необходимо: попробовать незнакомую пищу, как можно дольше продержать ее во рту, очень медленно прожёвывать, прислушиваться к собственным ощущениям и вкусовым реакциям. После этого решать: глотать еду или нет.

    Ощущение человеком мышц происходит за счет специальных рецепторов, они называются проприорецепторами. Они передают сигналы в центры мозга, сообщая о состоянии мышц. В ответ на эти сигналы, мозг направляет импульсы, которые координируют работу мышц. Учитывая влияние гравитации, мышечное чувство «работает» стабильно. Поэтому человек способен принимать удобную для себя позу, которая имеет большое значение в работоспособности.

    Болевая чувствительность человека имеет защитную функцию, она предупреждает об опасности. После поступления сигнала о боли начинают действовать оборонительные рефлексы, как например, удаление организма от раздражителя. При ощущении боли перестраивается деятельность всех систем организма.

    Боль воспринимается всеми анализаторами. Когда превышается порог допустимой нормы чувствительности, возникает ощущение боли. Имеются также специальные рецепторы – болевые. Боль может нести опасность, болевой шок осложняет деятельность организма и функцию самовосстановления.

    Функции слухового анализатора человека заключаются в возможности воспринимать мир, который наполнен звуками во всей его полноте. Некоторые звуки являются сигналами и предупреждают человека об опасности.

    Звуковую волну характеризует интенсивность и частота. Человек их воспринимает, как громкость звука. Слуховой анализатор человека представлен внешним органом – ухом. Ухо является сверхчувствительным органом, оно может улавливать изменения давления, которые поступают от поверхности земли. Строение уха разделяется на наружное, среднее и внутреннее. Оно воспринимает звуки и сохраняет равновесие тела. С помощью ушной раковины улавливаются и определяются звуки, их направление. Барабанная перепонка под воздействием звукового давления колышется. Сразу за перепонкой имеется среднее ухо, еще дальше внутреннее ухо, в котором находится специфическая жидкость, и два органа — вестибулярный аппарат и орган слуха.

    В органе слуха находится примерно 23 тысячи клеток, являющихся анализаторами, в которых звуковые волны переходят в нервные импульсы, устремляющиеся в мозг человека. Ухо человека способно воспринимать от 16 герц (Гц) до 2 кГц. Звуковая интенсивность измеряется в белах и децибелах.

    Человеческое ухо владеет важной и специфической функцией – бинауральным эффектом. Благодаря бинауральному эффекту человек может определить, с какой стороны к нему поступает звук. Звук, направляется в ушную раковину, которая обращена к его источнику. У человека с одним глухим ухом бинауральный эффект бездействует.

    Вибрационная чувствительность также является не менее важной, чем различные сенсорные анализаторы человека. Влияние вибраций может быть очень вредным. Они являются локальными раздражителями и наносят повреждающее воздействие на ткани и находящиеся в них рецепторы. Рецепторы имеют связь с ЦНС, их воздействие оказывает влияние на все системы организма.

    Если частота механических колебаний низкая (до десяти герц), тогда вибрации распространяются по всему организму независимо от места нахождения источника. Если такое низкочастотное воздействие происходит очень часто, тогда под негативным влиянием находятся мышцы человека, которые быстро поражаются. Когда на организм воздействуют высокочастотные вибрации, то ограничивается зона их распространения в месте контакта. Это вызывает изменения в кровеносных сосудах, и часто может вызвать нарушения функционирования сосудистой системы.

    Вибрации оказывают действие на сенсорную систему. Вибрации общего действия, ухудшают зрение и его остроту, ослабевают светочувствительность глаз и ухудшают функционирование вестибулярного аппарата.

    Локальные вибрации снижают тактильную, болевую, температурную и проприоцептивную чувствительность человека. Такие разносторонние негативные воздействия на организм человека приводят к серьезным и тяжелым изменениям в деятельности организма и способно вызвать заболевание под названием виброболезнь.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»