Реакция разложения какого вещества сопровождается выделением теплоты. Что такое тепловой эффект реакции

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

7. Вычислить тепловой эффект реакции при стандартных условиях: Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,если теплота образования: Fe 2 O 3 (т) = – 821,3 кДж/моль;СО (г) = – 110,5 кДж/моль;

СО 2 (г) = – 393,5 кДж/моль.

Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,

Зная стандартные тепловые эффекты сгорания исходных веществ и продуктов реакции, рассчитываем тепловой эффект реакции при стандартных условиях:

16. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа. Температурный коэффициент реакции.

К реакциям приводят только столкновения между активными молекулами, средняя энергия которых превышает среднюю энергию участников реакции.

При сообщении молекулам некоторой энергии активации Е (избыточная энергия над средней) уменьшается потенциальная энергия взаимодействия атомов в молекулах, связи внутри молекул ослабевают, молекулы становятся реакционноспособными.

Энергия активации не обязательно подводится извне, она может быть сообщена некоторой части молекул путем перераспределения энергии при их столкновениях. По Больцману, среди N молекул находится следующее число активных молекул N   обладающих повышенной энергией  :

N  N·e – E / RT (1)

где Е – энергия активации, показывающая тот необходимый избыток энергии, по сравнению со средним уровнем, которым должны обладать молекулы, чтобы реакция стала возможной; остальные обозначения общеизвестны.

При термической активации для двух температур T 1 и T 2 отношение констант скоростей будет:

, (2) , (3)

что позволяет определять энергию активации по измерению скорости реакции при двух различных температурах Т 1 и Т 2 .

Повышение температуры на 10 0 увеличивает скорость реакции в 2 – 4 раза (приближенное правило Вант-Гоффа). Число, показывающее, во сколько раз увеличивается скорость реакции (следовательно, и константа скорости) при увеличении температуры на 10 0 называется температурным коэффициентом реакции:

 (4) .(5)

Это означает, например, что при увеличении температуры на 100 0 для условно принятого увеличения средней скорости в 2 раза ( = 2) скорость реакции возрастает в 2 10 , т.е. приблизительно в 1000 раз, а при = 4 –в 4 10 , т.е. в 1000000 раз. Правило Вант-Гоффа применимо для реакций, протекающих при сравнительно невысоких температурах в узком их интервале. Резкое возрастание скорости реакции при повышении температуры объясняется тем, что число активных молекул при этом возрастает в геометрической прогрессии.


25. Уравнение изотермы химической реакции Вант-Гоффа.

В соответствии с законом действующих масс для произвольной реакции

а A + bB = cC + dD

уравнение скорости прямой реакции можно записать:

,

а для скорости обратной реакции:

.

По мере протекания реакции слева направо концентрации веществ А и В будут уменьшаться и скорость прямой реакции будет падать. С другой стороны, по мере накопления продуктов реакции C и D скорость реакции справа налево будет расти. Наступает момент, когда скорости υ 1 и υ 2 становятся одинаковыми, концентрации всех веществ остаются неизменными, следовательно,

,

ОткудаK c = k 1 / k 2 =

.

Постоянная величина К с, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Константа равновесия является постоянной только для данной температуры, т.е.

К с = f (Т). Константу равновесия химической реакции принято выражать отношением, в числителе которого стоит произведение равновесных молярных концентраций продуктов реакции, а в знаменателе – произведение концентраций исходных веществ.

Если компоненты реакции представляют собой смесь идеальных газов, то константа равновесия (К р) выражается через парциальные давления компонентов:

.

Для перехода от К р к К с воспользуемся уравнением состояния P · V = n·R·T. Поскольку

, то P = C·R·T. .

Из уравнения следует, что К р = К с при условии, если реакция идет без изменения числа моль в газовой фазе, т.е. когда (с + d) = (a + b).

Если реакция протекает самопроизвольно при постоянных Р и Т или V и Т, то значенияG и F этой реакции можно получить из уравнений:

,

где С А, С В, С С, С D – неравновесные концентрации исходных веществ и продуктов реакции.

,

где Р А, Р В, Р С, Р D – парциальные давления исходных веществ и продуктов реакции.

Два последних уравнения называются уравнениями изотермы химической реакции Вант-Гоффа. Это соотношение позволяет рассчитать значения G и F реакции, определить ее направление при различных концентрациях исходных веществ.

Необходимо отметить, что как для газовых систем, так и для растворов, при участии в реакции твердых тел (т.е. для гетерогенных систем) концентрация твердой фазы не входит в выражение для константы равновесия, поскольку эта концентрация практически постоянна. Так, для реакции

2 СО (г) = СО 2 (г) + С (т)

константа равновесия записывается в виде

.

Зависимость константы равновесия от температуры (для температуры Т 2 относительно температуры Т 1) выражается следующим уравнением Вант-Гоффа:

,

где Н 0 – тепловой эффект реакции.

Для эндотермической реакции (реакция идет с поглощением тепла) константа равновесия увеличивается с повышением температуры, система как бы сопротивляется нагреванию.

34. Осмос, осмотическое давление. Уравнение Вант-Гоффа и осмотический коэффициент.

Осмос – самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой ). Для расчета значения  в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

где С – моляльная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом.

i · C · R · T,

где i – изотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна  и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1) · ,(i > 1).

Для сильных электролитов можно принять  = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

Тепловой эффект реакции количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть Н (Р,Т = const) или U (V,T = const).

Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (Н 0 ), то реакция называется экзотермической.

Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (Н 0), называются эндотермическими.

Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (Н) обычно относят к 1 моль вещества и выражают в кДж/моль.

Обычно функции системы определяют при стандартных условиях , в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25C). Часто температуру указывают в виде нижнего индекса ().

5.3. Термохимические уравнения

Термохимические уравнения реакций  уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

C (графит) + O 2 (газ) = CO 2 (газ) , Н 0 298 = 396 кДж.

Тепловой эффект можно записать в уравнении реакции:

C (графит) + O 2 (газ) = CO 2 (газ) + 396 кДж.

В химической термодинамике первая форма записи употребляется чаще.

Особенности термохимических уравнений.

1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты . Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

½H 2 + ½Cl 2 = HCl, H 0 298 = 92 кДж

или Н 2 + Cl 2 = 2HСl, H 0 298 = 184 кДж.

2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж жидкое, г  газообразное, т твердое или к – кристаллическое, р – растворенное.

Например:H 2 + ½ O 2 = H 2 О (ж) , Н 0 298 = -285,8 кДж.

H 2 + ½ О 2 = H 2 О (г) , Н 0 298 = 241,8 кДж.

3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения  они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

5.4. Закон Гесса и его следствия

В основе термохимических расчетов лежит закон открытый российским ученым Гессом Г. И. (1841 г.). Суть его в следующем: тепловой эффект химической реакции зависит только от начального и конечного состояния системы, но не зависит от скорости и пути процесса, то есть от числа промежуточных стадий. Это, в частности, значит, что термохимические реакции можно складывать вместе с их тепловыми эффектами. Например, образование CO 2 из углерода и кислорода можно представить следующей схемой:

С+О 2 Н 1 СО 2 1. C (граф.) +O 2 (г) = CO 2 (г) , Н 0 1 = 396 кДж.

2. C (граф.) + 1/2O 2 (г) = CO (г) , Н 0 2 = Х кДж.

Н 2 Н 3

3. CO (г) + 1/2O 2 (г) = CO 2 (г) , Н 0 3 = 285,5кДж.

СО + ½ О 2

Все эти три процесса находят широкое применение в практике. Как известно, тепловые эффекты образования СО 2 (Н 1) и горения СО (Н 3) определяются экспериментально. Тепловой же эффект образования СО (Н 2) экспериментально измерить невозможно, так как при горении углерода в условиях недостатка кислорода образуется смесь СО и СО 2 . Но энтальпию реакции образования СО из простых веществ можно рассчитать.

Из закона Гесса следует, что H 0 1 = H 0 2 + H 0 3 . Следовательно,

H 0 2 = H 0 1  H 0 3 = 396  (285,5) = 110,5 (кДж) – это и есть истенная величина

Таким образом, пользуясь законом Гесса, можно находить теплоту реакций, которые невозможно определить экспериментально.

В термохимических расчетах широко используют два следствия закона Гесса. По первому, тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (реагентов).

Н 0 х.р. = n прод · H 0 ƒ прод - n исх · Н 0 ƒ реагентов ,

где n  количество вещества; Н 0 ƒ  стандартная энтальпия (теплота) образования вещества.

Тепловой эффект реакции образования 1 моль сложного вещества из простых веществ, определенный при стандартных условиях, называется стандартной энтальпией образования этого вещества (Н 0 образ или Н 0 ƒ кДж/моль).

Так как абсолютную энтальпию вещества определить невозможно, то для измерений и расчетов необходимо определить начало отсчета, то есть систему и условия, для которых принимается значение : Н = 0. В термодинамике в качестве начала отсчета принимают состояния простых веществ в их наиболее устойчивых формах при обычных условиях – в стандартном состоянии.

Например: Н 0 ƒ (О 2) = 0, но Н 0 ƒ (О 3) = 142,3 кДж/моль. Стандартные энтальпии образования определены для многих веществ и проведены в справочниках (табл. 5.1).

В общем виде для реакции аА+ вВ = сС + dD энтальпия, согласно первому следствию определяется по уравнению:

H 0 298 х.р. = (cН 0 ƒ, C + dН 0 ƒ , Е)  (аH 0 ƒ , A + вH 0 ƒ , B).

Второе следствие закона Гесса относится к органическим веществам. Тепловой эффект реакции с участием органических веществ равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов.

При этом теплота сгорания определяется в предположении полного

сгорания: углерод окисляется до CO 2 , водород  до H 2 O, азот  до N 2 .

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества (Н 0 сг.). При этом очевидно, что теплоты сгорания O 2 , CO 2 , H 2 O, N 2 принимаются равными нулю.

Таблица 5.1

Термодинамические константы некоторых веществ

Вещество

Н 0 f , 298 , кДж/ моль

S 0 298 , Дж/ мольK

G 0 f , 298 , кДж/ моль

Вещество

Н 0 f , 298, кДж/ моль

Дж/ мольK

G 0 f , 298 ,

С(графит)

Например, теплоту сгорания этанола

C 2 H 5 OH (ж) + 3O 2 = 2CO 2 + 3H 2 O (г)

H 0 х.р. = Н 0 сг (C 2 H 5 OH) = 2Н 0 ƒ, (CO 2)+3Н 0 ƒ, (H 2 O)  Н 0 ƒ, (C 2 H 5 OH).

Н 0 сг (C 2 H 5 OH) = 2(393,5) + 3(241,8) – (277,7) = 1234,7 кДж/моль.

Значения теплот сгорания также приведены в справочниках.

Пример 1. Определить тепловой эффект реакции дегидратации этанола, если

H 0 сг (C 2 H 4) =1422,8;H 0 сг (H 2 О) = 0; Н 0 сг (C 2 H 5 OH) =1234,7 (кДж/моль).

Решение. Запишем реакцию:C 2 H 5 OH (ж) =C 2 H 4 +H 2 O.

Согласно второму следствию определяем тепловой эффект реакции по теплотам сгорания, которые приведены в справочнике:

H 0 298 х.р = H 0 сг (C 2 H 5 OH)  H 0 сг (C 2 H 4)  H 0 сг (H 2 O) =

1234,7 + 1422,8 = 188,1 кДж/моль.

В технике для характеристики тепловых качеств отдельных видов топлива обычно используют их теплотворную способность.

Теплотворной способностью топлива называется тепловой эффект, который соответствует сгоранию единицы массы (1 кг) для твердых и жидких видов топлива или единицы объема (1 м 3) для газообразного топлива (табл. 5.2).

Таблица 5.2

Теплотворная способность и состав некоторых

распространенных видов топлива

Теплотворная способность,

кислород

Антрацит*

Древ. уголь

Прир. газ

Сырая нефть

*Антрацит – каменный уголь с максимальным содержанием углерода (94-96%).

Водород является наиболее эффективным химическим энергоносителем для энергетики, транспорта и технологии будущего, поскольку имеет очень высокую теплотворную способность (табл. 4.2), его относительно легко транспортировать, а при его сгорании образуется только вода, т.е. он является "чистым" горючим, не вызывает загрязнения воздуха. Однако, его широкому использованию в качестве источника энергии мешает слишком малое содержание водорода в природе в свободном состоянии. Большую часть водорода получают разложением воды или углеводородов. Однако, такое разложение требует большого расхода энергии, причем на практике из-за тепловых потерь на получение водорода приходится затратить больше энергии, чем ее потом можно будет получить. В перспективе, если удастся создать большие и дешевые источники энергии (например, в результате развития техники получения ядерной или солнечной энергии), часть ее будет использоваться на получение водорода. Многие ученые убеждены, что энергетика будущего – это водородная энергетика.

С помощью закона Гесса и его следствий можно определять многие величины, в том числе не определяемые экспериментально, если соответствующую неизвестной величине реакцию можно получить, складывая другие реакции с известными характеристиками.

Пример 2. Исходя из теплоты сгорания СН 4 (Н 0 сг =890кДж/моль) и Н 2 (Н 0 сг =286 кДж/моль), вычислить теплотворную способность газа, содержащего 60 % водорода и 40 % метана СН 4 .

Решение . Запишем термохимические уравнения реакций сгорания:

1) Н 2 +½О 2 = Н 2 О (ж) ;Н 0 f (Н 2 О)=286 кДж/моль;

    СН 4 + 2О 2 = СО 2 + 2Н 2 О (ж) ;Н 0 2

H 0 2 = Н 0 ƒ, (CO 2) + 2Н 0 ƒ, (Н 2 0)Н 0 ƒ, (СН 4) =3932 . 286 + 75 =890 кДж/моль.

1м 3 газа содержит 600л Н 2 и 400л СН 4 , что составляетН 2 иСН 4 . Теплотворная способность газа составит:

кДж/м 3 .

Пример 3. Используя данные таблицы 5.1, рассчитать тепловой эффект реакции сгорания этилена: С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О (г).

Решение. Из таблицы 5.1 выписываем значения энтальпий образования веществ, участвующих в реакции (в кДж/моль):

H 0 ƒ , co 2 =393,5;Н 0 ƒ , с 2 н 4 = 52,3;Н 0 ƒ , н 2 о =241,8.

(Напомним, что энтальпия образования простых веществ равна нулю.)

Согласно следствию из закона Гесса (4.4):

H 0 298 х.р =n прод · Н 0 ƒ , прод n исх · Н 0 ƒ , исх = 2Н 0 ƒ , со 2 + 2Н 0 ƒ , н 2 оН 0 ƒ , с 2 н 4 =

2 . (393,5) + 2 . (241,8)52,3 =1322,9 кДж.

Пример 4. Исходя из теплового эффекта реакции

3СаО (т) + Р 2 О 5 (т) = Са 3 (РО 4) 2 (т) ,Н 0 =739 кДж,

определить энтальпию образования ортофосфата кальция.

Решение. По следствию из закона Гесса:

H 0 298 х.р =Н 0 ƒ , Са 3 (PO 4) 2 (3Н 0 ƒ, СаО +Н 0 ƒ, P 2 O 5).

Из табл. 4.1: Н 0 ƒ , (СаО) =635,5;Н 0 ƒ , (P 2 O 5)=1492 (кДж/моль).

Н 0 ƒ , Са 3 (PO 4) 2 =739 + 3 . (635,5)1492 =4137,5 кДж/моль.

Пример 5. Написать термохимическое уравнение реакции сгорания твердой серы в N 2 O, если известно, что при сгорании 16 г серы выделяется 66,9 кДж тепла (предполагается, что при измерении теплоты температура продуктов снижается до температуры реагентов, равной 298 К).

Решение. Чтобы записать термохимическое уравнение, надо рассчитать тепловой эффект реакции:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ;H 0 = Х кДж.

По условию задачи известно, что при сгорании 16 г серы выделяется 66,9 кДж, а в реакции участвует 32 г серы. Составляем пропорцию:

16г 66,9 кДж

32г X кДж X = 133,8 к Дж.

Таким образом, термохимическое уравнение записывается так:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ,Н 0 х..р. =133,8 кДж.

(Так как тепло выделяется, реакция экзотермическая, Н 0 0).

Пример 6. Какое количество теплоты выделится при соединении 5,6 л водорода с хлором (н. у.), если энтальпия образования хлористого водорода равна91,8 кДж/моль (температура продуктов и реагентов равна 25С).

Решение. Н 0 ƒ , (HCl) = -91,8 кДж/моль, это значит, что при образовании одного моля HCl из простых веществ выделяется 91,8 кДж тепла, что соответствует термохимическому уравнению:

½Cl 2 +½ H 2 =HCl,H 0 ƒ =91,8 кДж.

Из уравнения видно, что для получения 1 моль HCl расходуется 0,5 моль Н 2 , т. е. 0,5·22,4 л = 11,2 л. Составляем пропорцию:

11,2 л 91,8 кДж

5,6 л XX= 45,19 кДж.

Ответ: выделится 45,19 кДж тепла.

Пример 7. Определить энтальпию образования оксида железа (III), исходя из трех термохимических уравнений (справочником не пользоваться):

    Fe 2 O 3 + 3CO = 2Fe + 3CO 2 , Н 0 1 = 26,5 кДж;

    С (графит) +½O 2 = CO,Н 0 2 =110,4 кДж;

    СO 2 = C (графит) + O 2 ,Н 0 3 = + 393,3 кДж.

Решение: Запишем уравнение, тепловой эффект которого нужно определить:

4Fe + 3O 2 = 2Fe 2 O 3 ; Н 0 4 = 2Х кДж.

Чтобы из первых трех уравнений получить четвертое, надо уравнение 1) умножить на (2), а уравнения 2) и 3) – на (6) и сложить:

1) 4Fe + 6CO 2 = 2Fe 2 O 3 + 6CO, Н 0 1 = 2·(+26,5) кДж;

2) 6CO = 6С (графит) + 3O 2 ,Н 0 2 = 6·(+110,4) кДж;

3) 6C (графит) + 6O 2 = 6СO 2 ,Н 0 3 = 6·(393,3) кДж;

Н 0 4 = 2Н 0 1 + 6Н 0 2 + 6Н 0 3 = +53 + 662,42359,8 =1644,4 кДж.

Отсюда Н 0 ƒ (Fe 2 O 3) =822,2 кДж/моль.

ПРИ V - const и р = const

Тепловой эффект химической реакции, протекающей при по­стоянном объеме, называется изохорным тепловым эффектом и обозначается Q V .

Подставив в уравнение (43) Q V , с учетом, что V = const , получим

Следовательно, изохорный тепловой эффект реакции (про­текающей при изохорно-изотермическом процессе) равен измене­нию внутренней энергии системы.

Тепловой эффект реакции, протекающей при постоянном дав­лении, называется изобарным тепловым эффектом Q p . Подставив в уравнение (43) значение Q p , получим

(45)

Заменяя выражение U 2 + pV 2 на Н 2 , а U 1 + pV 1 на Н 1 , получаем

Q p = ΔН = Н 2 -Н 1 . (46)

Следовательно, изобарный тепловой эффект реакции (проте­кающей при изобарно-изотермическом процессе) равен измене­нию энтальпии системы.

Таким образом, изобарный и изохорный тепловые эффекты равны изменениям функций состояния (44) и (46). Следовательно, они не зависят от пути перехода, а определяются начальным и конечным состояниями системы. В общем случае теплоты реак­ции зависят от характера протекания процесса.

§ 5. ЗАВИСИМОСТЬ МЕЖДУ ТЕПЛОВЫМИ ЭФФЕКТАМИ Q v И Q p

Для вывода уравнения зависимости между Q v и Q p восполь­зуемся соотношением

Q p = ΔН = ΔU p + Δ (pV),

где ΔU p - изменение внутренней энергии термодинамической системы при осуществлении изобарного процесса. В общем слу­чае это изменение отличается от изменения внутренней энергии в изохорном процессе, т. е. ΔU P ≠ ΔU V , так как

V≠ const . Следовательно, . Поэтому при за­мене ΔU V на Q V уравнение (45) можно переписать так:

.

В конденсированных системах разница между Q p и Q v незна­чительна и можно принять, что Q p = Q v . Однако при наличии в системе газообразных веществ разница значительная.

Если принять газы идеальными, то уравнение (45) можно записать в виде

Q P = Qv + pΔV= Q V + pV 2 - pV 1 .

Заменив в этом выражении pV 2 на n 2 RT и pV 1 на n 1 RT , где n 1 и п 2 - числа киломолей газообразных веществ до и после реакции, из уравнения (3) получим

Q p = Q v + Δ nRT (47)

Q v = Q p -Δ nRT, (48)

где Δn - изменение числа киломолей газообразных продуктов реакции. При Δn > 0

Q V < Q P .

Примером такой реакции может служить реакция образова­ния окиси углерода

2С + О 2 = 2СО , в которой Δn= 2 - 1 = 1 и Q v = Q p - RT, т. е. Q v < Q p . Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.

При Δn <0 Q V > Q p . Примером такой реакции могут слу­жить реакции: СО + 0,5О 2 = СО 2 или Н 2 + 0,5О 2 = Н 2 О , в ко­торых Δn = 1 - 1,5 = -0,5 , т. е. Δn < 0 . Тогда Q v = Q p + 0,5RT , т. е. Q v > Q p .

В этом случае над термодинамической системой совершается работа внешней средой и система получает дополнительную теп­лоту.

Когда Δn = 0 , тепловые эффекты Q v = Q p . Примером такой реакции может быть реакция СО + Н 2 О = СО 2 + Н 2 , в кото­рой Δn = 2 - 2 = 0 . Следовательно, Q v = Q p .

ЗАКОН ГЕССА

Независимость теплового эффекта реакции от промежуточных стадий химических процессов была установлена русским ученым академиком Г. И. Гессом в 1840 г. на основании эксперименталь­ных данных. Это справедливо для реакций, протекающих при V, Т = const или р, Т = const . Такое утверждение является, по существу, законом сохранения энергии применительно к хи­мическим реакциям. Следует заметить, что закон Гесса - основ­ной закон химической теплодинамики был открыт еще до того, как был сформулирован первый закон термодинамики. Закон Гесса устанавливает, что тепловой эффект химической реакции не зависит от пути перехода системы из одного состояния в дру­гое, а определяется лишь начальным и конечным ее состояниями.

Таким образом, выведенные ранее соотношения

Q V =U 2 -U 1 и Q p =H 2 - H 1

являются алгебраическими выражениями закона Гесса.

Расчеты тепловых эффектов химических реакций описаны в ра­ботах М. В. Ломоносова, Лавуазье, Лапласа. Значительный экспериментальный материал был получен Г. И. Гессом, Н. Н. Бекетовым, Бертло, Томсоном, И. А. Каблуковым и другими учеными. Обширные исследования по определению теп­ловых эффектов химических реакций проведены В. Ф. Лугининым и его учениками.

Для определения тепловых эффектов химических реакций применяются специальные приборы - калориметры.

Закон Гесса имеет большое практическое значение, так как с его помощью можно вычислить тепловые эффекты химических реакций, экспериментальное определение которых затруднительно или практически неосуществимо. Поясним это на примере

Предположим, что вещество А превращается в вещество В тремя путями: непосредственно из веще­ства А в вещество В с тепловым эффектом Q 1 ; через стадии С, D с тепловыми эффектами Q 2 , Q 3 , Q 4 , через стадии Е , N , М с тепловыми эффектами Q 5 , Q 6 , Q 7 и Q 8 . По закону Гесса суммарные тепловые эффекты одинаковы, поэтому

Q 1 =Q 2 +Q 3 +Q 4 ;

Q 1= Q 5 +Q 6 +Q 7 +Q 8 .

Q 2 +Q 3 +Q 4 =Q 5 +Q 6 +Q 7 +Q 8 .

Пользуясь этими соотношениями, легко вычислить тепловой эффект любой химической реакции, который невозможно полу­чить экспериментально. Например, тепловой эффект

Q 8 =Q 1 -Q 5 -Q 6 -Q 7 .

Как правило, экспериментальное определение тепловых эффектов на всех стадиях проводится с большой тщательностью, соблюдаются все предпосылки, вытекающие из закона Гесса (усло­вия, к которым приводятся начальные и конечные продукты сго­рания, одинаковый химический состав исходных продуктов и т. д.), сведены до минимума ошибки и неточности, связанные с усло­виями теплообмена экспериментальной аппаратуры с окружаю­щей средой, способами измерения температур и др., т. е. необра­тимые потери, связанные с превращением механической энергии непосредственно в тепловую, практически отсутствуют.

С помощью закона Гесса можно производить расчеты, исполь­зуя так называемые термохимические уравнения, представляю­щие собой стехиометрические уравнения химических реакций, в которых наряду с химическими формулами веществ, участвую­щих в реакции, записываются тепловые эффекты (отнесенные к одинаковым условиям). С этими уравнениями можно произво­дить алгебраические действия так же, как с любыми алгебраи­ческими уравнениями.

Стехиометрическими уравнениями или соотношениями назы­ваются численные соотношения между количествами реагирую­щих веществ, отвечающие законам стехиометрии, основные поло­жения которой вытекают из законов Авогадро, Гей-Люссака, постоянства состава, кратных отношений и др.

Из стехиометрического соотношения, например,

2Н 2 + О 2 = 2Н 2 О

следует, что при образовании воды на две молекулы водорода Приходится одна молекула кислорода или в общем виде

x a A+x b B=x a D , при образовании x d молекул вещества D на x а молекул вещества А требуется x b молекул вещества В . Коэффициенты х а , x b и x d - число молекул исходных веществ и полученных в реакции назы­ваются стехиометрическими коэффициентами.

Количество киломолей исходных и полученных веществ в хи­мической реакции пропорционально стехиометрическим коэф­фициентам. В газовых реакциях объемы и парциальные давления реагирующих веществ и продуктов реакции также пропорцио­нальны стехиометрическим коэффициентам.

Так как тепловые эффекты зависят от физического состояния реагирующих веществ и условий, при которых протекает реак­ция, то для возможности проведения термохимических расче­тов, тепловые эффекты, вводимые в термохимические уравнения, должны быть отнесены к каким-то одинаковым условиям, в про­тивном случае они несопоставимы. За такие условия принимают условия, при которых реакция осуществляется между веществами, находящимися в определенных стандартных состояниях.

За стандартные состояния индивидуальных жидких и твер­дых веществ принимают их устойчивое состояние при данной тем­пературе и давлении р = 1 атм = 760 мм рт. ст., или 1,013- 10 5 Па, а для индивидуальных газов - такое их состояние, когда при давлении р = 760 мм рт. ст. и данной температуре они подчиняют­ся уравнению состояния идеального газа.

Широко приводимые в справочниках тепловые эффекты обычно относят к давлению р = 1 физической атмосфере (1,013·10 5 Па) и температуре t = 25° С (298,15 К) и обозначают Q 0 V 298 и Q 0 P 298

или ΔQ 0 298 и ΔH 0 298 .

Из закона Гесса вытекают следствия, имеющие большое прак­тическое значение.

1. Тепловой эффект реакции разложения Q pa з химического соединения по величине равен и противоположен по знаку тепло­вому эффекту образования Q o 6p этого соединения из продуктов разложения:

Q разл =-Q обр

2. Если из двух химических систем образуются одни и те же конечные продукты двумя различными путями, то разность между значениями тепловых эффектов химических реакций равна теп­ловому эффекту превращения одной химической системы в дру­гую. Так, например, для реакции образования вещества В из веществ А и С (рис. 7), согласно закону Гесса,

Q 1 = Q 2 + Q 3 ,

откуда тепловой эффект превращения вещества А в С

Q 3 = Q 1 - Q 2

3. Если одинаковые по химическому составу системы двумя путями превращаются в различные конечные продукты, то разность между значениями тепловых эффектов, равна теплоте, по­лученной при превращении одного конечного продукта химиче­ской реакции в другой. Так, при образовании из вещества А ве­ществ В и С (рис. 8), согласно закону Гесса, Q 1 = Q 2 + Q 3 , откуда тепловой эффект перехода вещества С в вещество В

Q 3 =Q 1 - Q 2 .

При термохимических расчетах особое значение имеют два вида тепловых эффектов химических реакций: теплота образова­ния соединений и теплота сгорания.

Теплотой образования принято называть тепловой эффект реакции образования данного соединения из соответствующих простых веществ в стандартных условиях.

За стандартное состояние простых веществ принимают их стабильное состояние при давлении, равном одной физической атмосфере (760 мм рт. ст., или 1,013- 10 5 Па) и температуре 298,15 К.

В качестве примера можно привести реакцию образования бензола: из веществ в стандартных состояниях -"■ твердого угле­рода и газообразного водорода получается жидкий бензол

6С ТВ + ЗН 2 = С 6 Н 6ж .

Индексы соответственно «ж» и «тв» относятся к жидкой и твердой фазам. Индекс «г» относится к газообразному веществу, однако в расчетных уравнениях его обычно опускают.

Теплота образования, соответствующая стандартным усло­виям, называется стандартной. Данные по теплоте образования наряду с другими физико-химическими величинами приводятся в справочниках.

Так как при термодинамических расчетах определяют не аб­солютные значения внутренней энергии и энтальпии, а их изме­нение, то при определении теплоты образования какого-либо соединения начало отсчёта внутренней энергии или энтальпии можно выбрать произвольно. Так, например, в справочниках Для различных простых веществ при стандартных условиях при­нимают, что энтальпия равна нулю. К таким веществам отно­сятся С, Н 2 , О 2 , Cl 2(г) ,F 2(г) и др.

Таким образом, тепловой эффект образования соединений из этих веществ, например, Q p оказывается равным энтальпии соеди­нения при искомых условиях.

Теплоту образования можно относить к любому количеству вещества. В справочниках, как правило, ее относят к 1 кмоль или 1 кг соединения.

В табл. 1 приведены значения теплоты образования веществ для некоторых распространенных химических соединений.

Теплота сгорания. Горение представляет собой сложное, быстро протекающее химическое превращение, сопровождающееся выде­лением значительного количества теплоты и, как правило, ярким свечением.

Таблица 1. Тепловые эффекты образования соединений из простых веществ при стандартных условиях

Вещество Вещество Q 0 P 298 = ΔH 0 298 ·10 -6 Джfкмоль Q 0 P 298 = ΔH 0 298 ·10 -3 Ккалfкмоль
С (графит) С 2 Н 4г - этилен 52,28 12,492
Н г 217,98 52,098 С 2 Н 6г - этан -84,67 -20,236
H 2г С 3 Н 8г - пропан -103,9 -24,820
N 2 г С 6 Н вг - бензол 82,93 19,82
429,18 59,56 С 6 Н 6ж - бензол 49,04 11,718
OH г 38,96 9,31 С в Н 12г - цикло- -123,1 -29,43
OH 2г 0 - гексан
142,3 34,0 С 7 Н 8г - толуол 50,00 11,95
CO г -110,5 -26,41 С 7 Н 8ж - толуол 8,08 1,93
CO 2г -393,51 -94,05 C 10 H 8кр - нафта- 75,44 18,03
СаСО 3 (кальцит) -1206 -288,2 лин
СаО (кристалл) -635,1 -151,8 СН 4 О ж - метило- -238,7 -57,05
Н 2 О Г -241,84 -57,80 вый спирт
H 2 O ж -285,84 -68,32 СН 4 О Г - метило- -202,2 -48,09
NH 3 г -46,19 -11,04 вый спирт
NH 3 ж -69,87 -16,7 С 2 Н 6 О Ж - этило- -277,6 -66,35
NO г 90,37 21,60 вый спирт
NO 2 г 33,89 8,09 С 2 Н в О г - этило- -235,3 -56,24
N 2 O г 81,55 19,5 вый спирт
N 2 O 4r 9,37 2,24 CH 5 N r - метил- -28,03 -6,70
N a O 5 (12,5) (3,06) амин
CH 4r - метан -74,85 -17,889 C 2 H 7 N r - диметил- -27,61 -6,60
QH 2r - ацетилен 226,75 54,194 амин

Рис. 9. Схема калориметрической «бомбы»:

1 – цилиндр; 2 – крышка; 3 – чашечка; 4 - спираль

Тепловой эффект реакции горе­ния, называемый теплотой сгорания, обычно измеряют калориметрическим способом.

Теплотой сгорания соединения называется тепловой эффект реакции окисления данного соединения кис­лородом с образованием предельных высших окислов соответствующих элементов. Так, например, в орга­нических соединениях, являющихся основным топливом в тепловых двигателях, углерод окисляется до углекислого газа, водород - до водяных паров, другие вещества, входящие в соединение в незначительных количествах - до их конечных продуктов окисления.

На теплоту сгорания существенное влияние оказывают темпе­ратура и давление. Для возможности использования теплоты сго­рания в термохимических соотношениях ее нужно приводить к стандартным условиям. Теплота сгорания в этом случае назы­вается стандартной. Значение теплоты сгорания, найденное по справочнику, используется для определения тепловых эффектов реакций.

На рис. 9 приведена схема калориметрической бомбы, в кото­рой экспериментально определяют теплоту сгорания. Калориме­трическая бомба представляет собой толстостенный стальной цилиндр 1, покрытый изнутри платиной. На цилиндр навинчи­вают крышку 2. Внутри цилиндра предусмотрена чашечка 3 для навески исследуемого вещества. В цилиндр под высоким давлением нагнетают кислород. С помощью проволочки 4, нагре­ваемой электрическим током, поджигают исследуемое вещество. Бомбу помещают в калориметр, посредством которого и опре­деляют теплоту сгорания исследуемого вещества. Температуру про­дуктов сгорания «приводят» к температуре в бомбе до поджигания.

Теплота сгорания органических соединений, часто называемая теплотой сгорания топлива, является исходной величиной в рас­четах рабочих процессов тепловых двигателей. Она определяется как количество теплоты (в Дж или ккал), выделяющееся при пол­ном сгорании 1 кг массы, 1 м 3 объема или 1 кмоль топлива.

Теплота сгорания топлива, если ее определить описанным выше способом, в калориметрической бомбе будет теплотой сгорания для процесса при V = const, т. е. это будет тепловой эффект Q V .

Различают высшую и низшую теплоту сгорания топлива.

Высшей теплотой сгорания топлива Q B называется полное количество теплоты, выделившееся при сгорании горючих частей топлива при условии конденсации водяных паров.

Низшей теплотой сгорания топлива Q H называют разницу между полным количеством выделившейся теплоты и скрытой теп­лотой парообразования воды как имеющейся в топливе в виде примеси, так и получающейся в результате сгорания водорода.

Высшая Q B и низшая Q H теплоты сгорания топлива связаны между собой соотношением

-Q h = -Q B +r b (9H + W) = -Q b + 2,512·10 6 (9H+W) , Джfкг, (49)

где r b - скрытая теплота парообразования (для технических расчетов принято r b ≈ 2,512· 10 6 Джfкг); 9H - количество во­дяного пара, образующегося при сжигании H (кг) водорода, со­держащегося в 1 кг топлива; W - количество влаги, содержа­щейся в 1 кг топлива, кг.

В расчетах рабочих процессов ДВС за теплоту сгорания при­нимают низшую теплоту сгорания, так как продукты сгорания, удаляющиеся из двигателя через выпускную систему, обычно имеют температуру, превышающую температуру конденсации содержащихся в них водяных паров.

В табл. 2 приведены значения низшей теплоты сгорания топлив.

На основании закона Гесса и его следствий можно составить термохимическое уравнение для определения теплового эффекта реакции через тепловые эффекты образования реагирующих веществ.

Так, например, если имеет место реакция bВ + dD = еЕ + gG , где В, D, Е, G, b, d,e, g - исходные вещества и продукты реакции

Таблица 2

Низшая теплота сгорания топлив

Топливо Молекуляр- ная масса Низшая теплота сгорания
μ г, кгfмоль Джfкг · 10 -6 ккалfкг
Бензин (элементарный состав по массе 110-120 -44,0 -10 500
С = 0,855: Н = 0,145)
Дизельное топливо (элементарный со- 180-200 -42,50 -10 150
став по массе С = 0,870; Н = 0,126;
О = 0,004)
Керосин типа Т-1 -42,845 -10 230
СН 4г - метан 16,042 -49,80 -11 860
С 3 Н 8г - пропан 44,094 -46,05 -11 000
CH 5 N r - метиламин 31,058 -31,20 -7 446
СгН 7 Н г - этиламин 45,084 -35,15 -8 340
CH e N 2}K - металгидразин 46,084 -25,44 -^-6 070
C 2 H 8 N 2}K - несимметричный диметил- 60,100 -32,90 -7 850
Гидразин

и их стехиометрические коэффициенты соответственно, то тепло­вой эффект этой реакции

Q p =(eQ обр +gQ обрG) – (bQ обрB +dQ обрD)

Отсюда уравнение в общем виде

(50)

где Q обрB , Q обрD , Q обрE и Q o 6pG -теплота образования соот­ветственно исходных веществ и продуктов реакдии; n i - числа киломолей (от 1 до т), пропорциональные стехиометрическим ко­эффициентам реагирующих веществ.

Следовательно, тепловой эффект реакции равен разности теплоты образования продуктов реакции и теплоты образования исходных веществ, взятых с соответствующими стехиометрическими коэффициентами.

С помощью закона Гесса и его следствий можно также соста­вить термохимическое уравнение для расчета теплового эффекта, если известна теплота сгорания веществ, участвующих в ре­акции.

В общем виде

т. е. тепловой эффект реакции равен разности между теплотой сгорания исходных веществ и теплотой сгорания продуктов реак­ции (с учетом их стехиометрических коэффициентов).

Это можно проиллюстрировать на примере сгорания метило­вого спирта СН 3 ОН (рис. 10). Теплота сгорания 1 кмоля метилового жидкого спирта

Q 2сг = - 726,49·10 6 Дж/кмоль;

теплоты сгорания С в СО 2 и Н 2 в Н 2 О Ж соответственно равны

Q" 1 c г = -393,51·10 6 Дж/кмоль;

Q" 1 c г = -285,84·10 6 Дж/кмоль;

Q lc г = -965,19 ·10 6 Дж/кмоль.

Рис. 10. Схема определения теп­лов ого эффекта при сгорании ме­тилового спирта

Запишем термохимические уравнения реакций горения:

C +O 2 = CO 2 + Q" 1 c г;

2Н 2 + О 2 = 2Н 2 О Ж + 2Q" 1 c г;

СН 3 ОН Ж + 1,5О 2 = СО 2 + 2Н 2 О + Q 2 .

Для определения теплоты образования метилового спирта из уравнения С + 2Н 2 + 0,5О 2 = СН 3 ОН + Q 3 сложим два напи­санных выше уравнения и вычтем третье. После некоторых пре­образований получим

С + 2Н 2 + 0,5О 2 = СН 3 ОН + (Q lcr - Q 2cr),

сравнивая два последних уравнения, заключаем, что искомая теплота образования 1 кмоля жидкого метилового спирта

Q 3обр = -238,7·10 6 Джfкмоль.


Похожая информация.


Подобно тому, как одной из физических характеристик человека является физическая сила, важнейшей характеристикой любой химической связи является сила связи, т.е. её энергия.

Напомним, что энергия химической связи – эта та энергия, которая выделяется при образовании химической связи или та энергия, которую нужно истратить, чтобы эту связь разрушить.

Химическая реакция в общем случае – это превращение одних веществ в другие. Следовательно, в ходе химической реакции происходит разрыв одних связей и образование других, т.е. превращения энергии.

Фундаментальный закон физики гласит, что энергия не возникает из ничего и не исчезает бесследно, а лишь переходит из одного вида в другой. В силу своей универсальности данный принцип, очевидно, применим и к химической реакции.

Тепловым эффектом химической реакции называется количество теплоты,

выделившееся (или поглотившееся) в ходе реакции и относимое к 1 моль прореагировавшего (или образовавшегося) вещества.

Тепловой эффект обозначается буквой Q и, как правило, измеряется в кДж/моль или в ккал/моль.

Если реакция происходит с выделением тепла (Q > 0), она называется экзотермической, а если с поглощением тепла (Q < 0) – эндотермической.

Если схематично изобразить энергетический профиль реакции, то для эндотермических реакций продукты находятся выше по энергии, чем реагенты, а для экзотермических – наоборот, продукты реакции располагаются ниже по энергии (более стабильны), чем реагенты.

Ясно, что чем больше вещества прореагирует, тем большее количество энергии выделится (или поглотится), т.е. тепловой эффект прямо пропорционален количеству вещества. Поэтому отнесение теплового эффекта к 1 моль вещества обусловлено нашим стремлением сравнивать между собой тепловые эффекты различных реакций.

Лекция 6. Термохимия. Тепловой эффект химической реакции Пример 1 . При восстановлении 8,0 г оксида меди(II) водородом образовалась металлическая медь и пары воды и выделилось 7,9 кДж теплоты. Вычислите тепловой эффект реакции восстановления оксида меди(II).

Решение . Уравнение реакции CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +Q (*)

Составим пропорцию при восстановлении 0,1 моль – выделяется 7,9 кДж при восстановлении 1 моль – выделяется x кДж

Откуда x = + 79 кДж/моль. Уравнение (*) принимает вид

CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +79 кДж

Термохимическое уравнение – это уравнение химической реакции, в котором указаны агрегатное состояние компонентов реакционной смеси (реагентов и продуктов) и тепловой эффект реакции.

Так, чтобы расплавить лед или испарить воду, требуется затратить определенные количества теплоты, тогда как при замерзании жидкой воды или конденсации водяного пара такие же количества теплоты выделяются. Именно поэтому нам холодно, когда мы выходим из воды (испарение воды с поверхности тела требует затрат энергии), а потоотделение является биологическим защитным механизмом от перегрева организма. Напротив, морозильник замораживает воду и нагревает окружающее помещение, отдавая ему избыточное тепло.

На данном примере показаны тепловые эффекты изменения агрегатного состояния воды. Теплота плавления (при 0o C) λ = 3,34×105 Дж/кг (физика), или Qпл. = - 6,02 кДж/моль (химия), теплота испарения (парообразования) (при 100o C) q = 2,26×106 Дж/кг (физика) или Qисп. = - 40,68 кДж/моль (химия).

плавление

испарение

обр ,298.

Лекция 6. Термохимия. Тепловой эффект химической реакции Разумеется, возможны процессы сублимации, когда твердое вещество

переходит в газовую фазу, минуя жидкое состояние и обратные процессы осаждения (кристаллизации) из газовой фазы, для них также возможно рассчитать или измерить тепловой эффект.

Ясно, что в каждом веществе есть химические связи, следовательно, каждое вещество обладает некоторым запасом энергии. Однако далеко не все вещества можно превратить друг в друга одной химической реакцией. Поэтому договорились о введении стандартного состояния.

Стандартное состояние вещества – это агрегатное состояние вещества при температуре 298 К, давлении 1 атмосфера в наиболее устойчивой в этих условиях аллотропной модицикации.

Стандартные условия – это температура 298 К и давление 1 атмосфера. Стандартные условия (стандартное состояние) обозначается индексом0 .

Стандартной теплотой образования соединения называется тепловой эффект химической реакции образования данного соединения из простых веществ, взятых в их стандартном состоянии. Теплота образования соединения обозначается символом Q 0 Для множества соединений стандартные теплоты образования приведены в справочниках физикохимических величин.

Стандартные теплоты образования простых веществ равны 0. Например, Q0 обр,298 (O2 , газ) = 0, Q0 обр,298 (C, тв., графит) = 0.

Например . Запишите термохимическое уравнение образования сульфата меди(II). Из справочника Q0 обр,298 (CuSO4 ) = 770 кДж/моль.

Cu (тв.) + S (тв.) + 2O2 (г.) = CuSO4 (тв.) + 770 кДж.

Замечание : термохимическое уравнение можно записать для любого вещества, однако надо понимать, что в настоящей жизни реакция происходит совершенно по-другому: из перечисленных реагентов образуются при нагревании оксиды меди(II) и серы(IV), но сульфат меди(II) не образуется. Важный вывод: термохимическое уравнение – модель, которая позволяет производить расчеты, она хорошо согласуется с другими термохимическими данными, но не выдерживает проверки практикой (т.е. неспособна правильно предсказать возможность или невозможность реакции).

(B j ) - ∑ a i × Q обр 0 ,298 i

Лекция 6. Термохимия. Тепловой эффект химической реакции

Уточнение . Для того, чтобы не вводить Вас в заблуждение, сразу добавлю, что химическая термодинамикаможет предсказывать возможность / невозможность реакции , однако для этого требуются более серьезные «инструменты», которые выходят за рамки школьного курса химии. Термохимическое уравнение по сравнению с этими приемами – первая ступенька на фоне пирамиды Хеопса – без него не обойтись, но высоко не подняться.

Пример 2 . Вычислите тепловой эффект конденсации воды массой 5,8г.Решение . Процесс конденсации описывается термохимическим уравнением H2 O (г.) = H2 O (ж.) + Q – конденсация обычно экзотермический процесс Теплота конденсации воды при 25o C 37 кДж/моль (справочник).

Следовательно, Q = 37 × 0,32 = 11,84 кДж.

В 19 веке русским химиком Гессом, изучавшим тепловые эффекты реакций, был экспериментально установлен закон сохранения энергии применительно к химическим реакциям – закон Гесса .

Тепловой эффект химической реакции не зависит от пути процесса и определяется только разностью конечного и начального состояний.

С точки зрения химии и математики данный закон означает, что мы вольны для расчета процесса выбрать любую «траекторию расчета», ведь результат от нее не зависит. По этой причине очень важный закон Гесса имеет невероятно важное следствие закона Гесса .

Тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования реагентов (с учетом стехиометрических коэффициентов).

С точки зрения здравого смысла данное следствие соответствует процессу, в котором сначала все реагенты превратились в простые вещества, которые затем собрались по-новому, так что получились продукты реакции.

В форме уравнения следствие закона Гесса выглядит так Уравнение реакции: a 1 A 1 + a 2 A 2 + … + a n A n = b 1 B 1 + b 2 B 2 + … b

При этом a i иb j – стехиометрические коэффициенты,A i – реагенты,B j – продукты реакции.

Тогда следствие закона Гесса имеет вид Q = ∑ b j × Q обр 0 ,298

k Bk + Q

(A i )

Лекция 6. Термохимия. Тепловой эффект химической реакции Поскольку стандартные теплоты образования многих веществ

а) сведены в специальные таблицы или б) могут быть определены экспериментально, то становится возможным предсказать (рассчитать) тепловой эффект очень большого количества реакций с достаточно высокой точностью.

Пример 3 . (Следствие закона Гесса). Рассчитайте тепловой эффект паровой конверсии метана, происходящей в газовой фазе при стандартных условиях:

CH4 (г.) + H2 O (г.) = CO (г.) + 3 H2 (г.)

Определите, является ли данная реакция экзотермической или эндотермической?

Решение: Следствие закона Гесса

Q = 3 Q0

Г ) +Q 0

(CO ,г ) −Q 0

Г ) −Q 0

O , г ) - в общем виде.

обр ,298

обр ,298

обр ,298

обр ,298

Q обр0

298 (H 2 ,г ) = 0

Простое вещество в стандартном состоянии

Из справочника находим теплоты образования остальных компонентов смеси.

O ,г ) = 241,8

(СO ,г ) = 110,5

Г ) = 74,6

обр ,298

обр ,298

обр ,298

Подставляем значения в уравнение

Q = 0 + 110,5 – 74,6 – 241,8 = -205,9 кДж/моль, реакция сильно эндотермична.

Ответ: Q = -205,9 кДж/моль, эндотермическая

Пример 4. (Применение закона Гесса). Известны теплоты реакций

C (тв.) + ½ O (г.)= CO (г.) + 110,5 кДж

С (тв.) + O2 (г.) = CO2 (г.) + 393,5 кДж Найти тепловой эффект реакции 2CO (г.) + O2 (г.) = 2CO2 (г.).Решение Умножим первое и второе уравнение на 2

2C (тв.) + O2 (г.)= 2CO (г.) + 221 кДж 2С (тв.) + 2O2 (г.) = 2CO2 (г.) + 787 кДж

Вычтем из второго уравнения первое

O2 (г.) = 2CO2 (г.) + 787 кДж – 2CO (г.) – 221 кДж,

2CO (г.) + O2 (г.) = 2CO2 (г.) + 566 кДж Ответ: 566 кДж/моль.

Замечание: При изучении термохимии мы рассматриваем химическую реакцию извне (снаружи). Напротив, химическая термодинамика – наука о поведении химических систем – рассматривает систему изнутри и оперирует понятием «энтальпии»H как тепловой энергии системы. Энтальпия, таким

Лекция 6. Термохимия. Тепловой эффект химической реакции образом, имеет тот же смысл, что и количество теплоты, но имеет противоположный знак: если энергия выделяется из системы, окружающая среда её получает и греется, а система энергию теряет.

Литература :

1. учебник, В.В. Еремин, Н.Е. Кузьменко и др., Химия 9 класс, параграф 19,

2. Учебно-методическое пособие «Основы общей химии» Часть 1.

Составители – С.Г. Барам, И.Н. Миронова. – взять с собой! на следующее семинарское занятие

3. А.В. Мануйлов. Основы химии. http://hemi.nsu.ru/index.htm

§9.1 Тепловой эффект химической реакции. Основные законы термохимии.

§9.2** Термохимия (продолжение). Теплота образования вещества из элементов.

Стандартная энтальпия образования.

Внимание!

Мы переходим к решению расчетных задач, поэтому на семинары по химии отныне и впредь желателен калькулятор.

Лабораторная работа №3

Тепловой эффект (энтальпия) химической реакции

Цель работы: на основании термодинамических представлений научиться делать заключение о принципиальной возможности и направленности химических процессов.


  1. Краткое теоретическое введение.
Химическая термодинамика как раздел общей термодинамики изучает переходы одних форм энергии в другие формы, имеющие место в химических реакциях, процессах растворения и кристаллизации, электродных процессах и ряде других взаимодействий, или вообще в химический системах(под химической системой понимают произвольно выделенную часть пространства с заключенными в ней реагирующими веществами).

Химическая термодинамика, как и общая термодинамика, основана, главным образом, на двух законах.

Согласно первому закону термодинамики, для замкнутых систем, имеющих возможность обмениваться энергией, сообщенное им тепло Q расходуется на приращение внутренней энергии и на совершение работы A против внешних сил:

Q принимает положительные значения, если система поглощает энергию.

Внутренняя энергия – функция состояния системы, определяемого параметрами давления p , объема V , температуры T и т.д., определяется разностью
, и не зависит от пути процесса.

Теплота и работа характеризуют не состояние, а процесс, и поэтому их нельзя считать видами энергии (это способ передачи энергии), они зависят от пути изменения состояния.

Работа совершается системой при изменении объема V 1 до V 2 , равна:

A =
.

Если реакция протекает при постоянном объеме (изохорный процесс), то работа расширения системы (А = p *
) равна нулю. Если при этом не совершаются и другие виды работы (например, электрическая), то

=,

где - количество поглощенной системой теплоты при постоянном объеме.

Химические реакции чаще всего осуществляются не при постоянном объеме, а при постоянном давлении p (
= 0, изобарный процесс). Для этих условий из уравнения первого закона термодинамики ни одной функции исключить нельзя:

= + p* = +p(V 1 - V 2).

Раскрыв скобки можно записать уравнение так:

= (U 2 +pV 2) – (U 1 +pV 1).

Функцию U + pV = H назовем энтальпией или энергосодержанием. Энтальпия – функция состояния, характеризует полную энергию системы в условиях постоянного давления и температуры и представляет сумму внутренней энергии и работы против внешних сих.

Таким образом, сообщенное системе тепло при постоянном давлении идет на приращение ее энтальпии.

=

Энтальпия, как и внутренняя энергия, является функцией состояния, и абсолютное значение ее определить невозможно.

В термодинамике тепловой эффект рассматривается относительно самой реакционной системы («эгоистическая» система знаков). Тепловому эффекту экзотермических реакций приписывают знак «-» (система отдает тепло), а тепловому эффекту эндотермической реакции – знак»+» (система получает тепло).

Для многих практических целей важно знать тепловой эффект реакции при постоянном давлении, чаще всего при атмосферном. В дальнейшем будем оперировать только тепловым эффектом при постоянном давлении (изменение энтальпии).

= const = + p*=; =.

По закону Гесса тепловой эффект реакции ( ) равен разности сумм теплот (энтальпий) образования ( обр ) ее конечных и начальных продуктов.

При этом следует учитывать стехиометрические коэффициенты уравнения реакций:

где n k и n H – число молей каждого из конечных и начальных продуктов,

обр соответственно – их теплоты (энтальпии) образования, - общий тепловой эффект (энтальпия).

Тепловой эффект, соответствующий образованию 1 моля соединения из элементарных веществ, устойчивых в стандартных условиях, называется стандартной тепловой (энтальпией) образования данного соединения. Теплоты образования элементарных веществ (H 2 , O 2 , N 2 , C (графит), Cl 2 и т.д.) в стандартных условиях (Р = 1013 Па, Т = 298 К) условно принимают равной нулю. Стандартные теплоты (энтальпии) образования приводятся в справочниках.

Согласно закону сохранения массы и энергии Ломоносова при образовании химического соединения поглощается или выделяется такое количество теплоты, какое выделяется или поглощается при его разложении на первоначальные составные части.

Законами термохимии пользуются для вычисления тепловых эффектов реакций или теплот образования соединений, которые не могут быть определены опытным путем.

В термохимических уравнениях указывается агрегатное состояние и модификация вещества, если оно и то же вещество может существовать в нескольких различных кристаллических модификациях.

Движущая сила и направление химических реакций. На основе изучения тепловых эффектов химических реакций был сформулирован принцип Бертло (1867г.), утверждающий, что мерой химического сродства служит тепловой эффект химических реакций, что самопроизвольно протекают лишь такие процессы, которые сопровождаются выделением теплоты (), т.е. экзотермические процессы.

Этот принцип соблюдается часто, но далеко не всегда; возможны случаи самопроизвольно протекающих эндотермических реакций. Это объясняется тем, что кроме принципа минимума энергии ( 0 ) действует принцип максимума беспорядка (
>0). S – энтропия, характеризующая возможные состояния вещества и их непрерывные изменения. Чем больше число отдельных непрерывно изменяющихся микросостояний, тем больше неупорядоченность его общего состояния.

S газа > S жидкости > S твердого тела

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц) сопровождается уменьшением энтропии. Энтропия выражается в единицах, отнесенных к произведению температуры и количества вещества (Дж/моль К).

Энтропия, как и энтальпия, есть функция состояния системы. Для получения сравнимых данных сопоставляют стандартные измерения энтропии
.

Изменение энтропии системы () в результате химической реакции равно сумме энтропий продуктов реакции за вычетом суммы энтропий исходных веществ с учетом числа молей, участвующих в реакции:

=
.

В отличи от энтальпии образования энтропия простого вещества, даже находящегося в кристаллическом состоянии, не равна нулю.

В изолированной системе самопроизвольные процессы протекают в сторону увеличения энтропии>0. Если

Таким образом в химических (или физических) системах одновременно действуют две конкурирующие тенденции: принцип минимума энергии (принцип Бертло) и принцип максимума беспорядка (максимума энтропии).

Химическое средство, или движущая сила реакции определяется свободной энергией, т.е. той частью общего теплосодержания, которая может быть использована для совершения максимальной работы. Ее определяют при постоянных значениях Р и Т и называют энергией Гиббса, а в стандартных условиях – стандартной энергией Гиббса, обозначая
и
, точнее и з м е н и н и е м энергии Гиббса. Термины-синонимы: изобарно-изотермический (изобарный) потенциал, свободная энтальпия.

Энергия Гиббса связана с энтропией соотношением G = H – T*, Где Т – абсолютная температура. Для изобарно-изотермического процессов изменение энергии Гиббса равно:

= -Т* .

Значение зависит не только от природы реагирующих веществ, но и от агрегатного состояния и условий. Для получения сравнимых данных, характеризующих различные реакции, сопоставляют стандартные изменения энергии Гиббса:

Энергию Гиббса образования относят к 1 моль вещества, выражают в кДж/моль; при этом образования простого вещества принимают равной нулю.

Изменение энергии Гиббса может быть также записано следующим образом:

Первый член этого выражения представляет энтальпийный фактор, а второй – энтропийный. Первый отражает тенденцию системы к образованию связей в результате взаимного притяжения частиц – молекул или атомов, что приводит к их усложнению, а второй – тенденцию к усилению процесса диссоциации сложных частиц на более простые и их менее упорядоченному состоянию. Оба фактора действуют в противоположных направлениях, и общее направление реакции определяется влиянием преобладающего фактора.

При постоянных значениях Р и Т самопроизвольно протекают лишь такие реакции, изобарные потенциалы которых отрицательны реакции, тем больше ее движущая сила. В ходе реакции увеличивается и при = 0 в системе устанавливается равновесие. Если > 0, то реакция не может идти без затраты энергии извне, и такое неравенство свидетельствует о принципиальной возможность реакции при данных условиях (Р и Т ), а при неравенстве
реакция неосуществима в любых условиях.

Таким образом, - движущая сила процесса, она является истинным критерием возможности протекания процесса.

Если реакции протекают при низких температурах и без участия газообразных веществ, то Т*
и , т.е. критерием реакции может служить изменение энтальпии (действует принцип Бертло). В остальных случаях необходимо рассчитывать изменение энергии Гиббса.


  1. Выполнение работы.
Определение теплового эффекта (энтальпии) реакции нейтрализации

HCl + NaOH = NaCl + H 2 O

Сравнить измеренное значение с теоретическим и вычислить относительную ошибку измерения, написать термодинамическое уравнение реакции нейтрализации.

Лабораторное оборудование.

Калориметр включает в себя внутренний стакан, в котором проводится реакция, внешний стакан, теплоизоляционную прокладку, крышку, в которой имеются отверстия для термометра и воронки. Для измерения массы реагирующих веществ используют лабораторные весы, для измерения объемов – мерные цилиндры. Для перемешивания растворов используют магнитную мешалку.

Материалы и реактивы: растворы HCl и NaOH.

Ход работы.

Взвесить внутренний стакан калориметра (m 1), опустить в него мешалку и взвесить внутренний стакан с мешалкой (m 2). Налить в стакан 45 мл щелочи соответствующей концентрации (1н или 2 н). Взвесить стакан с объемом щелочи (m 3). Собрать калориметрическую установку. Включить магнитную мешалку. Провести предварительный период реакции, регистрируя изменение температуры через 1 минуту в течение 5 минут. Ввести через воронку 40 мл раствора кислоты той же концентрации, что и щелочь. Регистрировать температуру в течение главного периода реакции. Продолжать регистрацию температуры еще в течение 5 минут заключительного периода реакции.

Результаты эксперимента представить в виде двух таблиц.

Таблица 2.1 Результаты измерения масс

Таблица 2.2.Результаты измерения температуры в ходе реакции


Время от начала опыта

Предварительный период

Главный период

Заключительный период

0,0

1,0

2,0

3,0

4,0

4,25

4,5

4,75

5,0

6,0

7,0

8,0

9,0

10

Темпе-ратура, о С

19,6

19,75

19,8

19,81

19,83

23,6

26,8

28,8

31,6

31,4

31,1

31

30,8

30,6

  1. Практическое решение
1. Теплоемкость калориметрической системы вычисляется по приближенной формуле:

С к = С стакана + С раствора + С термометра + С мешалки.

Теплоемкостью термометра пренебречь, а теплоемкости остальных частей определить по формулам:

С стакана = С стекла m 1 = 0,2 кал/г о С * 48,80 г = 9,76 кал/ о С = 9,76 10 -3 ккал/ о С,

где С стекла = 0,2 кал/г о С;

С раствора = С раствора m p = 1,0 кал/г о С * 92,29 г = 92,29 кал/ о С = 92,29 10 -3 ккал/ о С,

где С раствора = 1,0 кал/г о С;, не искаженное теплообменом, происходящим в течение главного периода, нужно продолжить AB и CD до пересечения их с вертикальной прямой Е. Для этого точки v и n, соответствующие начальной и конечной температурам главного периода, нанести на ось ординат. Через середину отрезка mn провести линию KP. Пересечение этой линии с кривой BC дает точку l, определяющую положение прямой Е. Отрезок Е и будет равен ккал/моль ,

где С к – температура всех частей калориметрической системы, кал/ о С,

- изменение температуры в ходе реакции, о С,

С к - количество выделившегося при реакции тепла, кал,

K – число молей эквивалентов кислоты в заданном объеме.

5. Расчет погрешности эксперимента.

Относительная ошибка определяется по формуле:

Е =
=
= 22,6 % ,

где
- экспериментально определенное значение энтальпии реакции,
- теоретическое значение энтальпии реакции нейтрализации сильной кислоты сильным основанием. Нейтрализация моля эквивалентов любой сильной кислоты любим сильным основанием в разбавленных растворах всегда сопровождается одним и тем же экзотермическим эффектом, равным 13,70 ккал/моль. Этот факт теория электролитической диссоциации тем, что реакция нейтрализации сводится к образованию моля воды:

Т.е.
.

Главным фактором, определяющим точность результата, будет погрешность определения , т.к. ошибки взвешивания не превышают сотых долей процентов.


  1. Вывод
Выполняя данную лабораторную работу, я узнала, что такое энтальпия и энтропия, научилась определять тепловой эффект (энтальпию) реакции нейтрализации опытным путем. Я получила, что она равна -16,8 ккал/моль 22,6 % , сравнила с теоретическим значением, они несколько отличаются, т.к. были допущены погрешности при подсчетах и непосредственном выполнении работы.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»