Азотные удобрения. Доступные для растений формы азота Форма в которой находится азот в мочевине

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Азот необходим для формирования аминокислот, белков и хлорофилла. Азот играет важную роль в развитии растений. Азот имеет гораздо большее влияние на растения, чем большинство других важных элементов. Избыток или недостаток Азота существенно влияет на рост растений и качество урожая.

Симптомы дефицита Азота

Дефицит Азота проявляется осветлением листьев растения. Так как N достаточно подвижный элемент, то первые симптомы дефицита Азота появляются сразу на старых листьях, которые становятся светло-зеленого цвета. Когда дефицит усиливается, листья желтеют и отмирают. Дефицит Азота приводит к сокращению периода вегетации, наблюдается мелколистность, уменьшение кустистости.

Симптомы дефицита Азота быстро развиваются, но могут так же быстро и корректироваться, добавлением нужной формы N, регулировкой концентрации.

Тяжелые последствия может нанести длительная нехватка N в период активного роста.

Дефицит Серы можно спутать с дефицитом Азота. Но при дефиците Серы, симптомы появляются на всем растении, а при дефиците Азота сначала на старых листьях и только потом распространяются на все растение.

Симптомы отравления Азотом

Избыток Азота так же опасен, как и дефицит, особенно для плодовых культур.

Избыток Азота сопровождается усиленным ростом: растения пышные с темно-зеленой листвой. Такие листья больше подвержены болезням и атакам насекомых и очень чувствительны к изменениям окружающей среды.

Излишки N в плодовых культурах не только ухудшают обильность цветения и развитие плодов, но и снижают качество урожая. Нельзя повлиять на качество плодов элементами F и B пока Азот в избытке.
Избыток N наносит больше ущерба растению, чем дефицит.

Формы Азота

Существуют две формы азота: NO 3 - и NH 4 + .

Контролируя их соотношение в растворе, можно добиться некоторого стабильного значения pH.

Если NH 4 + единственный источник азота в растворе, то это приводит к подкислению. Растения поглощают больше иона аммония, чем серной кислоты, соответственно в растворе накапливается анион серной кислоты и раствор подкисляется. И, наоборот, если в растворе содержится только NO 3 - , раствор подщелачивается.

В целом, в кислой среде NO 3 - легче поглощается, а NH 4 + лучше усваивается при более высоком рН. При рН 6,8 обе формы азота поглощаются одинаково.

Влияние Азота на pH в корневой зоне

В клетках корней должен поддерживаться электрический баланс, поэтому для каждого положительно заряженного иона, который притягивается, должен быть освобожден положительно заряженный ион, то же самое верно и для отрицательно заряженных ионов.

Таким образом, когда растение «притягивает» аммоний (NH 4 +), оно освобождает протон (Н +) в раствор. Повышение концентрации протонов вокруг корней, снижает рН в корневой зоне. Соответственно, когда растение «притягивает» нитраты (NO 3 -), оно выпускает бикарбонат (HCO3-), что увеличивает рН вокруг корней.

Из этого следует, что поглощение нитратов увеличивает рН вокруг корней,
в то время как поглощение аммония уменьшает ее.

Это явление особенно важно в гидропонике, где корни могут легко повлиять на рН среды, поскольку их объем относительно велик по сравнению с объемом питательной среды.

Для предотвращения скачков рН раствора и нужно правильное соотношение аммония / нитратов, которое зависит от сорта, температуры и стадии роста.

Следует отметить, что при определенных условиях, рН «реагирует» не так, как ожидалось в связи с нитрификацией. Нитрификация очень быстрый процесс, и добавка аммония может быть быстро преобразована и поглощена в виде нитратов, тем самым увеличивая рН в корневой зоне, а не уменьшая его.

Влияние Азота на поглощение других элементов

Аммонийный Азот легче поглощается при повышенном содержании в растворе магния, кальция и калия. Аммоний - катион (положительно заряженный ион), поэтому он конкурирует с другими катионами (калия, кальция, магния) в поглощении корнями. Слишком высокое содержание аммония может привести к дефициту кальция и магния. Поглощение калия меньше зависит от «конкуренции» с Аммонийным Азотом.

Для питания растения нитратным Азотом важное значение играет достаточное наличие молибдена и фосфора. Дефицит молибдена замедляет восстановление нитратов, снижается ассимиляция нитратного азота.

Так как соотношение аммония / нитратов может изменить рН вокруг корней, то изменение pH может повлиять на растворимость и доступность других питательных веществ.

Если соотношение NO 3 - и NH 4 + больше, чем 9 к 1, то рН раствора имеет тенденцию к увеличению с течением времени, а при соотношении 8 к 1или менее, рН уменьшается со временем. Из графика видно, что NH 4 + , как правило, гораздо больше подкисляет раствор, чем NO 3 - подщелачивает. Поэтому и рекомендуют % содержания аммонийного азота намного меньше чем нитратного для стабилизации рН раствора.

Соотношение нитратного и аммонийного Азота

Процент аммонийного азота NH 4 + в питательном растворе не должен превышать 50% от общей концентрации N.

Оптимальным же является соотношение: 75% NO 3 - и 25% NH 4 + .

Если основным источником Азота будет NH 4 + , то это может быть токсично для растения. Однако, некоторое количество NH 4 + желательно, так как наличие NH 4 + в питательном растворе стимулирует поглощение NO 3 - .

5% NH 4 + в растворе достаточно для стимуляции поглощения NO 3 - , а более высокий процент (до 25% от общего) необходим для постоянно аэрируемых растворов, чтобы получить то же стимулирующее действие на NO 3 - . Метаболизм аммония требует гораздо больше кислорода, чем метаболизм нитратов.

Соотношение Азотов зависит от вида растений, стадии роста растений, температуры питательного раствора, рН в корневой зоне и других факторов.

Если ион NH 4 + является основным источником Азота в питательном растворе, то его влияние на рост томатов, например, может быть существенным в зависимости от интенсивности освещения. При низком освещении эффекта почти нет, а при высокой интенсивности света отмечено снижение роста растений на 30%, проявляются симптомы: скручивание листьев, увядание, хлороз старых листьев.

Соотношение Азотов в зависимости от вида растений и стадии роста

При подборе соотношения нитратного и аммиачного азотов, следует учитывать виды растений. Плодоносящие растения, такие как помидор и перец, особенно чувствительны к NH 4 + . Когда NH 4 + присутствует в питательном растворе при образовании цветов и плодов, урожайность снижается. Плоды могут поражаться вершинной гнилью. Поэтому аммонийный азот может быть включен в состав раствора в начале вегетации, но затем должны быть исключен с момента образования цветков и до конца цикла.

Сахара должны транспортироваться вниз от листьев к корням, чтобы «встретиться» с аммонием.

При выращивании плодов и растений, в которых наибольший рост происходит в листьях (например, китайская капуста, салат, шпинат), сахара потребляются быстрее около их места производства и гораздо менее доступны для транспортировки к корням. Таким образом, аммоний не сможет эффективно метаболизироваться и предпочтительно использовать меньше аммония по отношению к нитратам. В зимнее время аммония также нужно давать меньше, так как при недостатке света растение образует мало сахаров.

Соотношение Азотов в зависимости от температуры в прикорневой зоне

Метаболизм аммония требует гораздо больше кислорода, чем метаболизм нитратов. Аммоний метаболизируется в корнях, где он вступает в реакцию с сахарами. Эти сахара должны быть доставлены в корни из листьев.

С другой стороны нитраты транспортируются в листья, где они преобразовываются в аммоний, а затем вступает в реакцию с сахарами.

При более высоких температурах дыхание растения увеличивается, потребляется сахар быстрее, что делает его менее доступным для обмена веществ с аммонием в корнях. В то же время, при высоких температурах, растворимость кислорода в воде уменьшается, что делает его так же менее доступным.

Таким образом, при более высоких температурах целесообразно использование более низкого содержания аммония в растворе.
При более низких температурах питание аммонием является более оптимальным, потому что кислород и сахара более доступны на корневом уровне. Кроме того, поскольку транспорт нитратов в листьях снижен при низких температурах, использование нитрата в растворе приведет к задержке роста растений.

Токсичность аммония

Аммоний может быть токсичными для растений, если он является основным источником Азота в растворе. При отравлении аммонием замедляется рост и развитие, повреждаются стебли и листья, листья становятся чашеобразными. Разрушается сосудистая ткань (NH 4 + нарушает работу Ca, который требуется для поддержания целостности клеточной оболочки). Отравление Аммонием может в конечном итоге привести к гибели растения. Если стебель пострадавших растений разрезать чуть выше корневой линии, то хорошо видна разлагающаяся сосудистая ткань.

Но, похожие симптомы могут быть и у некоторых болезней, поэтому требуется тщательный анализ, чтобы определить, что вызывает распад, болезнь или отравление NH 4 + .

Аммиачный азот обычно не накапливается в растении в больших количествах. Это наблюдается только при недостатке углеводов; в таких условиях растение не может его переработать в безвредные органические вещества - аспарагин и глютамин.

Чрезмерная доза аммиачного азота в питательном растворе и недостаточность освещения, которая снижает интенсивность фотосинтеза, могут привести к повреждению листовой паренхимы из-за скопления аммиака.

Влияние концентрации Азота на корни

Концентрация азота в питательном растворе может влиять на характер роста корня. Увеличивается концентрация нитратного Азота – уменьшается количество и длина корневых волосков. Концентрации других основных элементов (P, K, Ca, Mg) не оказывают подобное влияние. Даже изменение концентрации NH 4 + в питательном растворе не влияет на корневые волоски. Однако, корни, подвергающиеся воздействию высоких концентраций NH 4 + в питательных растворах или где основным источником Азота является NH 4 + , будет грубы на вид, с небольшим ветвлением или тонкой структурой.

Концентрация Азота в питательном растворе

Большинство формул требуют общей концентрации N в питательном растворе в диапазоне от 100 до 200 мг / л (ppm).

Если аммонийный Азот NH 4 + входит в состав, то соотношение нитратного к аммонийному к должно быть примерно три или четыре к одному.

Инструкции часто требуют начинать подавать раствор с малых доз (<100 мг / л, ppm), затем увеличивать его к моменту созревания плодов. Это общепринятая практика в случае с плодовыми культурами, когда контроль поступления Азота нужен для минимизации чрезмерного вегетативного роста и инициирования развития плодов.

Источники Азота

Источники NO 3 - : нитрат кальция (Ca(NO 3) 2 4H 2 O), нитрат калия (KNO 3) и азотная кислота (HNO 3), аммиачная селитра (NH 4 NO 3).
Источники NH 4 + : аммиачная селитра (NH 4 NO 3), сульфат аммония (NH 4) 2 SO 4), аммония моно-или кислый фосфат (NH 4) 2 HPO 4 или NH 4 H 2 PO 4 .

Мочевина, CO(NH 2) 2 , не рекомендуется в качестве источника Азота для гидропонных растворов, так как ее гидролиз производит NH 4 , который может быть нежелательным катионом в питательном растворе. Молекулы мочевины могут непосредственно поглощаться корнями растений, хотя ее присутствие в растениях может быть не желательно.

Источники:
Чесноков В. А. «Выращивание растений без почвы», 1960.
J. Benton Jones «Hydroponics. A Practical Guide for the Soilless Grower. Second Edition», 2005.
Guy Sela «Ammonium-Nitrate Ratio in Plant Nutrition», 2010.

Азотные удобрения - азотосодержащие вещества, которые используются для повышения содержания азота в почве. В зависимости от формы азотного соединения, однокомпонентные азотные удобрения подразделяются на шесть групп. Используются в основной прием как припосевные удобрения и в качестве . Производство основано на получении синтетического аммиака из молекулярного водорода и азота.

Показать все

Группы азотных удобрений

В зависимости от содержащегося азотного соединения, однокомпонентные азотные удобрения подразделяются на шесть групп:

  • ( , );
  • ( , хлористый аммоний);
  • Амидные ();
  • ( , (КАС);

Нитратные удобрения

Нитратные удобрения содержат в нитратной форме (NO 3 -). К этой группе относятся NaNO 3 и Ca(NO 3) 2 .

Нитратные удобрения являются физиологически щелочными и сдвигают реакцию почвы от кислой к нейтральной. В связи с этим свойством их использование очень эффективно на кислых дерново-подзолистых почвах. Не рекомендуется использование на засоленных почвах.

Азотные удобрения (по формам азота)

Аммонийные удобрения - вещества, содержащие в форме катиона аммония NH 4 + .

К ним относятся сульфат аммония (NH 4) 2 SO 4 , сульфат аммония-натрия (NH 4) 2 SO+Na 2 SO 4 или Na(NH4)SO4*2H2O), хлористый аммоний NН 4 Сl.

Производство аммонийных удобрений проще и дешевле, чем нитратных, поскольку окисление аммиака в азотную кислоту не требуется.

во всем мире используют в орошаемом земледелии под рис и хлопчатник, особенно в районах избыточного увлажнения, в частности, в тропиках.В России сульфат аммония производят с 1899 года. Впервые его получили в Донбассе, на Щербинском руднике путем улавливания и нейтрализации серной кислотой аммиака, который образуется при коксовании каменного угля. Принципиальную схему этого способа используют и сейчас.

получают как отход производства капролака. Эффективно при внесении под свеклу и другие корнеплоды из-за присутствия натрия. Рекомендуется для сенокосов и пастбищ.

Хлористый аммоний (хлорид аммония)

содержит значительное количество хлора - 67 %, 24-26 %. Применять под чувствительные к хлору культуры (картофель, табак, виноград, лук, капусту, лен, коноплю) в качестве удобрения или не рекомендуется. Вносить хлорид аммония под хлорофобные культуры можно только осенью и в зонах достаточного увлажнения. В таком случае ионы хлора будут вымыты из корнеобитаемого слоя атмосферными осадками.

Хлорид аммония - мелкокристаллический порошок желтоватого или белого цвета. При 20°C в 100 м 3 воды растворяется 37,2 г вещества. Обладает хорошими физическими свойствами, при хранении не слеживается, малогигроскопичен.

Хлорид аммония получают как побочный продукт при производстве соды.

Аммонийно-нитратные удобрения содержат азот в аммонийной (NH 4 +) и нитратной форме (NO 3 -). К этой группе причисляют аммиачную селитру (NH 4 NO 3), сульфо-нитрат аммония ((NH 4) 2 SO 4 *2NH 4 NO 3 +(NH 4)SO 4), известково-аммонийную селитру (NH 4 NO 3 *CaCO 3).

содержит нитратный и аммонийный азот в соотношении 1: 1. Правильнее называть это удобрение аммонийной селитрой, но аммиачная селитра - название более распространенное. Это наиболее эффективное из однокомпонентных азотных удобрений. Аммиачная селитра - безбалластное удобрение. Стоимость его перевозки и внесения в почву значительно ниже, чем у других азотных удобрений (исключение - мочевина и жидкий аммиак). Сочетание подвижного нитратного азота с менее подвижным аммонийным азотом дает возможность широкого варьирования способов, доз и сроков внесения аммиачной селитры в зависимости от региональных почвенно-климатических условий и особенностей агротехники выращивания культур.

(сульфат-нитрат аммония, монтан-селитра, лейна-селитра) - сероватое мелкокристаллическое или гранулированное вещество сероватого цвета.

Физико-химические свойства удобрения позволяют успешно использовать его в различных почвенно-климатических условиях. Обладает потенциальной кислотностью.

Известково-аммонийная селитра

- гранулированное удобрение. Соотношение селитры и извести варьирует в зависимости от марки удобрения. Широко используется в странах Западной Европы.

Амидные удобрения

Амидные удобрения содержат в амидной форме (NH 2 -). К этой группе относится мочевина CO(NH 2) 2 . Азот в мочевине присутствует в органической форме в виде амида карбаминовой кислоты. Это наиболее распространенное твердое азотное удобрение. Применяется во все приемы внесения, но наиболее эффективно для .

Жидкие аммиачные удобрения - жидкие формы азотных удобрений. К этой группе относятся жидкий (безводный аммиак) NH 3 , аммиачная вода (водный аммиак), аммиакаты. Производство жидких аммиачных удобрений значительно дешевле, чем твердых солей.

содержит 82,3 % . Это самое концентрированное безбалластное удобрение. Внешне - бесцветная жидкость. Физико-химические свойства удобрения изменяются в зависимости от температуры окружающей среды. Хранится только в герметических сосудах, где под давлением разделяется на жидкую и газообразную фазы.

При транспортировке емкости заполняют не полностью. Вещество нейтрально к чугуну, железу и стали, но сильно коррозирует цинк, медь и их сплавы.

- раствор аммиака в воде, давление паров невысокое, черные металлы не разрушает. Азот содержится в форме аммиака NH 3 и аммония NH 4 OH. Свободного аммиака содержится гораздо больше, чем аммония. Это способствует потерям азота за счет улетучивания. Работать с аммиачной водой проще и безопаснее, чем с безводным аммиаком, но в связи с низким содержанием азота ее применение рентабельно только в хозяйствах, расположенных недалеко от предприятий, ее производящих.

Аммиакаты

содержат от 30 до 50 % азота. Внешне это жидкость светло-желтого или желтого цвета. Получают аммиакаты при растворении в водном аммиаке аммиачной селитры, аммиачной и кальциевой селитры, мочевины или аммиачной селитры и мочевины.

Аммиакаты отличаются по концентрации общего азота, по соотношению его форм и разнообразны по физико-химическим свойствам.

Аммиакаты вызывают коррозию медных сплавов. Аммиакаты с аммиачной селитрой окисляют, кроме того, и черные металлы. Хранение и транспортировка аммиакатов возможны в емкостях из алюминия, его сплавов, нержавеющей стали или в обычных стальных цистернах с антикоррозийным покрытием эпоксидными смолами. Возможно применение емкостей из полимерных материалов.

(КАС)

- смесь водных растворов мочевины и аммиачной селитры. КАС обладают нейтральной или слабощелочной реакцией. Внешне - прозрачные либо желтоватые жидкости. Путем изменения соотношения исходных компонентов получают различные марки КАС.

Поведение в почве

Все однокомпонентные азотные удобрения хорошо растворимы в воде.

Нитратные формы

передвигаются вместе с почвенным раствором и связываются в почве только биологическим типом поглощения. Биологическое поглощение активно только в теплое время года. С поздней осени до ранней весны нитраты легко передвигаются в почве и в условиях промывного водного режима могут вымываться, что особенно характерно для легких почв.

В теплое время года в почвах преобладают восходящие потоки влаги. А растения и микроорганизмы активно поглощают нитратный азот.

Аммиачные и аммонийные

формы в почве поглощаются почвенным комплексом (ППК) и переходят в обменно-поглощенное состояние. В таком виде подвижность азота теряется, и он не вымывается. Исключение - легкие почвы с низкой емкостью поглощения.

Дальнейшие процессы нитрификации способствуют трансформации азота в нитратные формы и биологическому поглощению его растениями и микроорганизмами почвы.

С мочевиной

после ее превращения под влиянием уробактерий в аммонийные формы азота происходит то же самое.

Таким образом, азотные удобрения изначально или в процессе нитрификации скапливаются в почве в нитратной форме, которая впоследствии подвергается денитрификации. Эти процессы протекают практически во всех типах почв, и именно с ними связаны основные потери азота.

С агрономической точки зрения, денитрификация является негативным процессом. Но с экологической стороны она играет позитивную роль, поскольку освобождает почву от не использованных растениями нитратов и уменьшает их поступление в сточные воды и водоемы.

Применение на различных типах почв

Эффективность внесения азотных удобрений зависит от почвенно-климатических условий региона. Наибольшая эффективность азотных удобрений наблюдается в районах достаточного увлажнения.

Бедные гумусом дерново-подзолистые почвы, серые лесные почвы, оподзоленные, выщелоченные черноземы

. Действие азотных удобрений устойчиво положительно. Причем, с повышением степени выщелоченности черноземов возрастает и эффективность азотных удобрений.

Супесчаные, песчаные почвы

нечерноземной зоны испытывают острую нехватку азота, поэтому здесь наблюдается высокая эффективность действия азотных удобрений. Однако в условиях промывного режима почвы отмечаются значительные потери азота, и его внесение производят преимущественно в весенний период.

Осушенные торфяно-болотные почвы

. Действие азотных удобрений снижается, поскольку в минимуме оказываются фосфорные и калийные удобрения. Однако в первые годы освоения торфяников в центральных и северо-западных районах нечерноземной зоны возрастает и эффективность азотных удобрений.

Оподзоленные и выщелоченные черноземы

правобережной лесостепи Украины показывают большую эффективность по применению азотных удобрений, чемлевобережной.

Выщелоченные черноземы европейской части России

. Наблюдается меньшая эффективность азотных удобрений в Поволжье. В Центрально-Черноземной зоне и на Северном Кавказе она несколько выше.

В степной зоне

при повышении засушливости климата действие азотных удобрений уменьшается либо становится очень неустойчивым. Но в условиях орошения эффективность действия азотных удобрений возрастает и бывает даже более высокой, чем фосфорных и калийных удобрений.

Типичные черноземы

Молдавии отличаются большими прибавками урожая.

Обыкновенные и карбонатные черноземы

Молдавии характеризуются меньшей эффективностью однокомпонентных азотных удобрений.

Обыкновенные черноземы

степных районов Украины . Азотные удобрения показывают значительную эффективность, но и действие значительно ослабляется с запада на восток.

Обыкновенные и карбонатные черноземы Кубани, предгорий Северного Кавказа, североприазовские черноземы

отличаются значительным положительным действием азотных удобрений.

Карбонатные черноземы Ростовской области, обыкновенные черноземы Поволжья

. Эффективность удобрений снижается.

Каштановые почвы

. При лучших условиях увлажнения отмечается хорошее действие удобрений. В засушливых условиях действие азотных удобрений бывает слабым.

Влияние на сельскохозяйственные культуры

Азотным удобрениям принадлежит ведущая роль в повышении урожайности различных сельскохозяйственных культур. Это связано с ролью азота как важного биологического элемента, играющего исключительную роль в жизни растений.

Достаточное снабжение азотом усиливает синтез органических азотистых веществ. У растений образуются мощные листья и стебли, интенсивность зеленой окраски усиливается. Растения хорошо растут и кустятся, улучшается формирование и развитие органов плодоношения. Эти процессы способствуют повышению урожайности и содержанию белка.

Однако необходимо учитывать, что односторонний избыток азота может задерживать созревание растений, способствуя развитию вегетативной массы при уменьшении развития зерна, корнеплодов или клубней. У льна, зерновых и некоторых других культур избыток азота вызывает полегание (фото) и ухудшение качества растениеводческой продукции.

Так, в клубнях картофеля может снизиться содержание крахмала. В корнеплодах сахарной свеклы снижается сахаристость и возрастает содержание небелкового азота.

При избытке азотных удобрений в кормах и овощах накапливаются потенциально опасные для здоровья человека и животных нитраты.

Получение азотных удобрений

Производство азотных удобрений основывается на получении синтетического аммиака из молекулярного азота и водорода.

Азот образуется при прохождении воздуха через генератор с горящим коксом.

Источники водорода - природный газ, нефтяные или коксовые газы.

Из смеси азота и водорода (соотношение 1: 3) при высокой температуре и давлении и в присутствии катализатора образуется аммиак:

N 2 + 3H 2 → 2NH 2

Синтетический аммиак идет на производство аммонийных азотных удобрений и азотной кислоты, которая используется для получения аммонийно-нитратных и нитратных удобрений.

4.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.- М.: Колос, 2002.- 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).

Изображения (переработаны):

5. 6. Свернуть

Какой азот на пользу, а какой - во вред? Ведь, например, под рододендрон нельзя вносить кальциевую селитру. В какой форме азот лучше поглощается растением? Разобраться в этом поможет доктор биологических наук Валерий Прохоров.

Несмотря на то, что азот растения используют экономно, обычно это самый дефицитный элемент питания. Основные его источники — органические и минеральные удобрения, органические вещества почвы, биологический азот, а также азот, поступающий с атмосферными осадками.

С помощью этого элемента можно управлять развитием растений. Особенно важен он в первой половине вегетации, когда идет интенсивный рост. Поэтому азотные обычно вносят весной перед или во время посева-посадки с немедленной заделкой в почву (азот улетучивается).

В первой же половине лета его нужно использовать в виде жидких подкормок небольшими дозами, чтобы элемент лучше усваивался. Внесение осенью нецелесообразно, так кик большая часть его вымывается, у растений удлиняется вегетационный период, и они не успевают подготовился к зимовке.

Из всего количества вносимого минерального азота растения поглощают в среднем половину. Остальной улетучивается при разложении до аммиака, смывается в водоемы или накапливается в почве и поступает в грунтовые воды. Из-за большой мобильности азотных соединений его нехватка в почве часто сдерживает рост и развитие растений.

Формы азота

В составе минеральных удобрений азот может находиться в аммиачной и нитратной форме. Аммиачная, в отличие от нитратной, хорошо поглощается почвой, меньше вымывается осадками и обладает более длительным действием; нитратная — плохо задерживается в почве и легко вымывается в более глубокие ее слои. Хотя большинство растений нормально развиваются на нитратной и аммонийной формах азота, многие виды, предпочитающие кислые почвы, лучше растут на аммонийном питании, а при нитратном у них может проявляться хлороз. В слабокислой почве лучше поглощается нитратная форма, в нейтральной — аммонийная. При аммиачном питании нужно увеличивать в почве содержание кальция, магния и калия, нитратном — фосфора и молибдена.

В связи с развитием экологически безопасных технологий, при которых сокращаются потери азота, в последние годы все больше применяют медленнодействующие азотные удобрения. Это плохо растворимые в воде соединения, азот из которых медленно переходит в усвояемую форму, постепенно исполняется растениями в течение вегетации и почти не теряется из почвы.

Основные виды азота

Аммиачная селитра (азотнокислый аммоний, нитрат аммония) — концентрированное гранулированное азотное удобрение, содержащее 34-35% азота. В ее состав входят аммиачная и нитратные формы азота. Для уменьшения потерь нитратного азота от вымывания селитру вносят дробно.

Ее нужно хранить в герметичной упаковке в сухом месте. Используют для всех видов растений на всех типах почв. Вносят непосредственно перед или во время посева, а также в виде подкормок в течение вегетации растений. Селитра подкисляет почву, поэтому наибольший эффект — на известкованных участках. Перед внесением можно смешивать с суперфосфатом и калийной солью.

Карбамид (мочевина) . Быстрорастворимый концентрат, содержащий 46% азота в аммиачной форме. Как и селитру, его используют для всех видов растений и почв, порядок внесения тот же. Наиболее эффективно в виде жидких подкормок, так как даже в повышенной концентрации не обжигает листья растений.

При поверхностном внесении в гранулах уступает селитре из-за более медленного действия и больших потерь азота, поэтому вносят под дождь или полив без заделки. При хранении слабо слеживается.

Сульфат аммония (аммоний сернокислый) содержит 2,5-21% азота в аммонийной форме и 24% серы. Быстрорастворимый и легко усваивается.

Используют его как основное удобрение и в виде подкормок. Значительно подкисляет почву, поэтому вносят под растения, предпочитающие кислый почвы, или одновременно с фосфоритной мукой.

Для менее чувствительных к кислотности (например, крестоцветные) благодаря наличию серы считается лучшим из азотных удобрений. Из почвы мало вымывается. По эффективности не уступает аммиачной селитре и карбамиду, не слеживается и дешевле.

Сульфат аммония нельзя смешивать перед внесением с гашеной известью и золой. Натриевая селитра хорошо растворима в воде, содержит 16% азота и 26% натрия. При неправильном хранении слеживается. Вносят только перед посевом или во время посева с заделкой в почву, а также в виде жидких подкормок. Подщелачивает почву.

Кальциевая селитра (нитрат кальция, азотнокислый кальций) также растворима в воде и содержит 13-15% азота. Сильно гигроскопична. Вносят перед или во время посева, а также в виде жидких подкормок под овощные и цветочные луковичные растения. Подщелачивает почву. Нельзя смешивать с суперфосфатом.

Источник журнал «Цветок»

Мочевина CO(NH 2) 2 содержит 46 % азота. Мочевина - самое концентрированное азотное удобрение, выпускается в гранулированном виде. При грануляции для уменьшения слеживаемости гранулы покрывают тонкой пленкой жировой добавки. Гранулированная мочевина обладает хорошими физическими свойствами, практически не слеживается, сохраняет хорошую рассеиваемость. Однако при грануляции под влиянием температуры в ней образуется биурет:

2CO(NH 2) 2 → (CONH 2) 2 HN+NH 3 . При его содержании более 3% угнетается рост растений, поэтому в гранулированной мочевине биурета должно быть не более 1%. В этом количестве он не действует отрицательно на проростки растений. В почве под влиянием уробактерий, выделяющих уреазу, мочевина аммонифицируется, образуя углекислый аммоний:

CO(NH 2) 2 +2Н 2 О=(NH 4) 2 CО 3 .

При благоприятных условиях на богатых гумусом почвах мочевина превращается в углекислый аммоний за 2-3 дня. На малоплодородных песчаных и болотных почвах этот процесс слабее.

Углекислый аммоний - соединение непрочное. На воздухе он разлагается с образованием бикарбоната аммония и газообразного аммиака:

(NH 4) 2 CО 3 → NH 4 HCО 3 +NH 3 . Поэтому при поверхностном внесении мочевины без заделки в почву и при отсутствии осадков могут быть частичные потери азота в виде аммиака, особенно на почвах с нейтральной и щелочной реакцией. На стадии аммонификации мочевина временно подщелачивает почву:

(NH 4) 2 CО 3 +Н 2 О = NH 4 HCО 3 +NH 4 OH.

На стадии нитрификации реакция почвы сдвигается в сторону кислого интервала. Однако в результате усвоения азота растениями в почве не остается ни щелочных, ни кислых остатков удобрения.

Мочевина - ценное азотное удобрение. Применяется под различные культуры. По действию на урожай сельскохозяйственных растений ее можно поставить в один ряд с NH 4 NО 3 . В зоне достаточного увлажнения на легких дерново-подзолистых почвах и при орошении на сероземах мочевина более эффективна, чем аммиачная селитра, так как амидный азот мочевины быстро превращается в аммиачный, а последний поглощается почвой и меньше вымывается. При основном внесении в богарных условиях она равноценна аммиачной селитре. Высокоэффективна мочевина при подкормке озимых с последующей немедленной заделкой ее боронованием, а также для подкормки пропашных полевых и овощных культур культиваторами-растениепитателями.

Применяется мочевина и в виде раствора для некорневой подкормки растений, особенно пшеницы для повышения ее белковости. В этом случае лучше применять кристаллическую мочевину, так как она содержит меньше биурета (0,2-0,3%).

Мочевина широко применяется не только как непосредственное удобрение, но и как компонент для производства сложных удобрений, а также для производства новых видов медленнодействующих азотных удобрений. В связи с более высокой экономичностью использования мочевины и других высококонцентрированных азотных удобрений низкопроцентные азотные туки постепенно теряют значение в общем балансе потребления азотных удобрений.

Цианамид кальция CaCN 2 содержит 20-21% азота. Это легкий порошок черного или темно-серого цвета, физиологически щелочное удобрение (до 20-28% СаО). Систематическое применение на кислых почвах улучшает ее физические свойства, благодаря нейтрализации кислотности и обогащению кальцием. Вносят заблаговременно, за 7-10 дней до посева или под зябь. В подкормку не рекомендуется, так как в почве цианамид кальция подвергается гидролизу и взаимодействует с поглощающим комплексом. При этом образуется цианамид (H 2 CN 2), который ядовит и анестезирующе действует на растения. Однако он быстро переходит в мочевину, поэтому и рекомендуется заблаговременное его внесение.

Жидкие азотные удобрения

Безводный аммиак (NH 3) - самое концентрированное безбаластное удобрение с содержанием азота 82,3%. Получается сжижением газообразного аммиака под давлением. По внешнему виду это бесцветная жидкость с удельным весом 0,61 при 20°С. При хранении в открытых сосудах быстро испаряется. Поэтому его хранят и перевозят в специальных толстостенных стальных цистернах, рассчитанных на давление 25-30 атм. При 20-40°С давление его составляет от 9 до 18 атм. Упругость паров, удельный вес и содержание азота в 1 м 3 безводного аммиака изменяются в зависимости от температуры. При хранении аммиака в герметических сосудах под давлением он разделяется на две фазы: жидкую и газообразную. Вследствие большой упругости паров емкости для хранения и транспортировки жидкого аммиака заполняются не полностью. Жидкий аммиак корродирует медь, цинк и их сплавы, но практически нейтрален по отношению к железу, чугуну, стали.

Аммиачная вода (водный аммиак) - раствор аммиака в воде. Первый сорт этого удобрения содержит 20,5% азота (25%-й аммиак), второй -16,4% азота (20%-й аммиак). Аммиачная вода имеет невысокое давление, не разрушает черные металлы. Поэтому для работы с ней используют резервуары из обычной углеродистой стали. При температуре 15°С плотность водного аммиака первого сорта составляет 0,910, второго - 0,927. 25%-й водный аммиак замерзает при температуре -56°С, 20%-й - при -33°С. Азот в аммиачной воде содержится в форме аммиака (NH 3) и аммония (NH 4 OH). Причем свободного аммиака содержится значительно больше, чем аммония, что обусловливает возможные потери азота за счет улетучивания. Работать с аммиачной водой проще, чем с безводным аммиаком, но она малотранспортабельна в связи с низким содержанием азота, поэтому аммиачную воду экономичнее применять в хозяйствах, расположенных вблизи предприятий, производящих это удобрение.

Внесенный в почву аммиак быстро адсорбируется ею, а также поглощается почвенной влагой, превращаясь в гидроокись аммония. Аммиак в почве подвергается нитрификации. Интенсивность поглощения аммиака почвой зависит от ее механического состава, содержания гумуса, влажности, глубины заделки удобрений и т.д. На тяжелых высокогумусированных и хорошо обработанных почвах аммиак поглощается лучше, чем на легких бедных гумусом. В связи с этим из почв легкого механического состава и сухих аммиак улетучивается быстрее.

Все жидкие азотные удобрения нельзя вносить поверхностно и мелко заделывать, особенно в сухую песчаную почву, во избежание потерь от улетучивания. Вносятся эти удобрения специальными машинами и заделываются на тяжелых почвах на глубину не менее 10-12 см, а на легких - 14-18 см. Во всех случаях безводный аммиак заделывается на глубину не менее 14-15 см, а водный - 10-12 см. Если почва крупнокомковатая, то глубина заделки этих удобрений увеличивается в 1,2-1,5 раза. Вносят их в основном приеме под зяблевую вспашку, весной - под предпосевную культивацию и в подкормку пропашных культур в тех же дозах (по азоту), как и твердые азотные удобрения. В связи с тем, что жидкие азотные удобрения вносятся локально, расстановку подкормочных сошников необходимо проводить для культур сплошного сева на 20-25 см, а на лугах и пастбищах - 30-35 см, при подкормке пропашных культур - в зависимости от ширины междурядий. Технология применения жидких азотных удобрений по сравнению с твердыми требует более высокой профессиональной подготовки специалистов, мастерства и ответственности механизаторов. Хозяйства должны быть полностью обеспечены современной материально-технической базой для их хранения, транспортировки и внесения.

Аммиакаты содержат от 30 до 50% азота. По внешнему виду - это жидкость светло-желтого или желтого цвета. Получают их путем растворения в водном аммиаке аммиачной селитры, аммиачной и кальциевой селитры, мочевины или аммиачной селитры и мочевины. Производится это в специальных установках. В 10-15%-ю аммиачную воду, приводимую в движение центробежным насосом, вводят горячий раствор аммиачной селитры (или смесь кальциевой и аммиачной селитры) и доводят удобрение до требуемого состава. Перевозят и хранят в специальных, герметически закрываемых цистернах, рассчитанных на небольшое давление.

Аммиакаты существенно различаются не только по концентрации общего азота, но и по соотношению его различных форм (свободного аммиака, связанного аммиака, амидного и нитратного азота). Поэтому они разнообразны по физическим свойствам. В связи с большим диапазоном температуры начала кристаллизации (от +14° до -70°С) зимой в период хранения необходимо выпускать аммиакаты с низкой, а летом - с более высокой температурой кристаллизации. Все аммиакаты транспортабельны, так как имеют высокий удельный вес и концентрацию азота.

Как и все аммонийные соли, особенно содержащие свободный аммиак, аммиакаты вызывают коррозию сплавов с медью, а аммиакаты с аммиачной селитрой окисляют и черные металлы. Поэтому для работы с ними требуются емкости из алюминия или его сплавов, из нержавеющей стали или обычные стальные цистерны с защитным коррозийным покрытием специальными лаками (эпоксидными смолами). Применяются также емкости из полимерных материалов.

По действию на урожай сельскохозяйственных культур аммиакаты в большинстве случаев равноценны твердым азотным удобрениям.

Растворы КАС (смеси водных растворов мочевины и аммиачной селитры ) готовятся в заводских условиях из неупаренных плавов этих удобрений с содержанием азота 28-32%. КАС имеют нейтральную или слабощелочную реакцию, представляют собой прозрачные или желтоватые жидкости с плотностью 1,26-1,33 г/см. В связи с сокращением ряда операций при производстве КАС в сравнении с твердыми азотными удобрениями (упаривание, грануляция и другие) значительно сокращаются затраты на производство единицы азота, а высокая плотность растворов удобрений повышает их транспортабельность.

Круговорот азота является одним из самых сложных круговоротов в природе. Охватывает всю биосферу, а также атмосферу, литосферу, гидросферу. Очень важную роль в круговороте азота играют микроорганизмы. В круговороте азота выделяют следующие этапы:

1-й этап (фиксация азота): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммонийной формы (NH и солей аммония) – это биологическая фиксация; б) вследствие грозовых разрядов и фотохимического окисления образуются оксиды азота, при взаимодействии с водой они образуют азотную кислоту, в почве она превращается в нитратный азот.

2-й этап – превращение в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.

3-й этап – превращение в животный белок. Животные поедают растения, в их организме растительные белки превращаются в животные.

4-й этап – разложение белка, гниение. Продукты метаболизма растений и животных, а также ткани отмерших организмов под воздействием микроорганизмов разлагаются с образованием аммония (процесс аммонификации).

5-й этап – процесс нитрификации. Аммонийный азот окисляется до нитритного и нитратного азота.

6-й этап – процесс денитрификации. Нитратный азот под воздействием денитрифицирующих бактерий восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.

Трансформация форм азота в почве: в почвенном блоке содержаться NH4, NО3 и органические формы азота. Органические соединения амонифицируются с восстановлением аммиака(при участии почвенных микроорганизмов). Часть аммиака связанный почвенными часточками потребляется растениями,а часть подвергается следующим процессам нитрификации(окисления).

Образуется NО2 и О2, нитраты: 1) NH3 + О2=2НNО2 + 2Н2О(этот процесс происходит с помощью микроорганизмов)

2) 2НNО2+О2=2 HNО3

Часть вымывается из почвы, часть потребляется растениями, часть подвергается денитрификации – восстановлению NО3 до молекулы азота при помощи бактерий нитрификаторов. Происходит потеря азота из почвы. Потеряный азот возвращается в круговорот при помощи процессов азотфиксации(переход азота в аммиачную форму).

36. Азотфиксация

Азотфиксация - процесс химического превращения атмосферного газообразного азота в нитраты или аммиак, которые могут использоваться растениями для синтеза аминокислот и других азотсодержащих органических молекул. Это энергозатратный процесс, энергия берется из электрических зарядов и на свету.

Азотфиксация бывает:

Химической(при высоком давлении и температуре)

N≡N →NН≡NН→NН2≡NН2→NН3≡NН3

(диамид) (гидразин)

Промышленная

Биологической: а)симбиотическая(бактерии проникают внутрь клетки вследствии чего происходит симбиоз). Осуществляется клубеньковыми бактреиями, азотфиксаторы бобовых.

Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Бактерии проникают в корневой волосок в виде сплошного тяжа, состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться, образуются вздутия - клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Бактерии при этом трансформируются сами, увеличиваются в размерах, поэтому их называют бактероиды. Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом.

б)не симбиотическая,осуществляется свободноживущими бактреиями(Clostridium, Azotobacter, цианобактреии).Они автотрофы.

в)ассоциативная: характерна для ризосферных микроорганизмов, то есть живущих на поверхности корневой системы растений. ассоциативные азотфиксаторы продуцируют гормоны роста растений, положительно влияют на рост и развитие растений (защита от фитопатогенов, разрушение токсических веществ)

Конечным продуктом фиксации азота является аммиак. В процессе восстановления азота до аммиака участвует мультиферментный комплекс - нитрогеназа. Нитрогеназа состоит из двух компонентов: MoFe-белок и Fe-белок.

Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Для восстановления N 2 до NH 3 требуется шесть электронов, согласно уравнению: N 2 + 6е + 2Н + -> 2NH 3

Процесс требует АТФ как источника энергии: по расчетам для восстановления одной молекулы N 2 требуется не менее 12 молекул АТФ. Особенность нитрогеназы заключается и в том, что для работы фермента требуются анаэробные условия. Вместе с тем в клетках высшего растения кислород необходим для поддержания дыхания. У многих азотфиксаторов имеются специальные механизмы защиты нитрогеназы – белок леггебоглобин. Роль леггемоглобина заключается в связывании 0 2 в организме бактерий, таким образом, что остается доступным для аеробного дыхания и не может воздействовать на фермент. Для образования леггемоглобина необходимы Fe, Сu и Со. Для нормального протекания процесса азотофиксации необходимы Мо и Fe, поскольку они входят в состав фермента нитрогеназы. Молибден выполняет структурную функцию, поддерживая конформацию нитрогеназы, каталитическую, участвуя в связывании азота и переносе электронов, а также индуцирует синтез нитрогеназы. Кобальт необходим в связи с тем, что он входит в состав витамина В 12 , который вовлекается в процесс биосинтеза леггемоглобина. Образовавшийся аммиак здесь же в клетках корня реагирует с а-кетоглутаровой кислотой с образованием глутаминовой кислоты, которая и вовлекается в дальнейший обмен. В надземные органы растения-хозяина азотистые вещества передвигаются главным образом в виде амидов.

37. Редукция нитратов в растениях Аммонийный азот после его поступления в растение может непосредственно участвовать в биосинтезе аминокислот. Нитратный должен восстановиться до NH4.Восстановление (редукция) нитратов идет в 2 этапа: начинается в корнях и заканчивается в надземной части. Начало идет под действием фермента нитратредуктаза происходит превращение нитратов в нитриты. Затем нитриты превращаются в аммиак с помощью фермента нитритредуктаза. В состав обоих ферментов входит Fe, а нитратредуктазы еще и Мо. Для нормального протекания данного процесса растение должно быть обеспечено Cu, Mg, Mn. Следует отметить что нитраты в растениях могут накапливаться в значительных количествах и подвергаться редукции по мере необходимости. Повышенная же концентрация аммиака приводит к отравлению растения.Процессы прямого аминирования и образования амидов.Биосинтез аминокислот из NH3 поступившего в растение из почвы или образовавшегося в результате восстановления нитратов и атмосферного азота, происходит в результате восстановительного (прямого) аминирования, с помощью ферментов NH3 взаимодействует с тремя кетокислотами ЩУК, ПВК, α-кетоглутаровая с образованием соответствующих аминокислот.При аминировании ЩУК образуется аспарагиновая кислота:COOH COOHCH2 CH2 C=O + NH3 + 2НАДФ∙Н →CH-NH2 +H2O + 2НАДФCOOH СООНПодобным образом α-кетоглутаровая превращается в глутаминовую:COOH COOHCH2 CH2CH2 CH2C=O + NH3 + 2НАДФ∙Н →CH-NH2 +H2O + 2НАДФCOOH СООНПВК в аланин:CH3 CH3 C=O + NH3 + 2НАДФ∙H →CH-NH2 + H2O + 2НАДФCH3 COOH 38. Ассимиляция азота в растениях Азот - один из 4-х незольных органогенных элементов, кроме того еще и минеральный элемент, т.к. поступает из почвычерез корневую систему (1,5%), обладает высокой биофильностью – изберательностью концентрирования в клетках по отношению к окружающей среде.Основные запасы минерального азота находятся в атмосфере, в пахотном слое (20 – 30 см.). На 1 га приходится приблезительно 18 т общего азота. Если вес пахотного слоя составляет 35 тыс. т., то 18 т – общего азота.0,5 - 2% из 18 т доступные для растения минеральные формы (NH4+ ; NO3-) При выращивании растений происходит вынос с урожаем 100 млн. т в год.Необходимо пополнение запасов азота: 1. Естественным путем - распад и минерализация органических остатков, а также фиксация молекул азота из воздуха. При интенсивных технологиях натуральные процессы поглощения нарушены. 2.Внесение минеральных удобрений. Производство минеральных удобрений очень энергозатратно, на 1 т удобрений используют 4 т нефти. На все сельское хозяйство приходится до 40 %. Избытки вносимых удобрений вымываются, загрязняя окружающую среду нитратами, что я вляются канцерогенами для организма человека.Ионы NO3- очень подвижны, плохо фиксируются в почве, легко вымываются.Ионы NH4+ менее подвижны, хорошо адсорбируются на почве, меньше вымываются осадками, его особенно удерживают гнилистые почвы и с высоким содержанием гумуса.Органические соединения в почве (фольвокислоты, белки, амиды, аминосахара и нуклеиновые кислоты) – в недоступной для растений форме. Только единичные органические соединения могут усваиваться растениями: мочевина, аспаргиновая кислота, глутаминовая кислота.1. NH2 – CO – NH2 2. C00H – CH – CH2 – COOH 3. COOH – CH – NH2 – CH2 – COOH 4. NH2 Внесение азота провоцирует надземную вегетацию и если перекормить растение – преобладает вегетативный этап и растение может задержать цветение или вообще не зацвести. В технологии урожайных культур азот нужно вносить исключительно на начальных этапах онтогенеза. При переходе к цветению вносят фосфор, калий, бор.

39. Поглощение и ассимиляция серы растениями. Физиологическая роль серы Сера поглощается в виде аниона серной кислоты, который в растении восстанавливается до сульфгидрильной группы SH, включающейся в цистеин. Восстановление идет в листьях, хлоропластах, частично в корнях, так как для него нужны углеводы. Первый этап превращения серы – активирование сульфата с помощью АТФ в присутствии ионов магния. Взаимодействуя с АТФ, сульфат под действием фермента АТФ-сульфурилазы образует аденозин-5-фосфосульфат (АФС): SO 4 -2 +AТФ→АФС+ФФ(пирофосфат). Такой активированный сульфат (АФС) является короткоживущим соединением. Он может реагировать с АТФ, образуя 3-фосфоаденозин-5фосфосульфат (ФАФС). ФАФС восстанавливается до сульфита (SO 4 -2) и за тем до сульфида (S -2), это главный путь ассимиляции сульфата у грибов. Другой путь заключается в том, что сера в АФС может превращаться в связанный с ферментом тиосульфид. Существует и третий путь, по которому АФС прямо восстанавливается до сульфита и за тем до сульфида. Образовавшийся тиосульфид или сульфид реагирует с О-ацетилсерином, и образуется цистеин или ацетат. Ферменты синтеза цистеина локализованы в цитозоле, пластидах и митохондриях. Восстановление сульфата до цистеина изменяет заряд серы от +6 до -4, тоесть для этого процесса нужны 10е. Донорами электроном могут быть восстановленный ферредоксин, НАД(Ф)Н и др.Цистеин необходим для синтеза метионина. После синтеза цистеина и метионина сера может включаться в белки и целый ряд других важных соединений (ацетил-КоА или S-аденозилметионин). Наиболее активно восстановление сульфата протекает в листьях, поскольку фотосинтез продуцирует восстановленный тиоредоксин и ферредоксин, а в гликолатном цикле образуется серин, стимулирующий образование О-ацетилсерина. Ассимилированная сера транспортируется по флоэме к месту синтеза белка, главным образом в виде глутамата. Восстановленная сера в растениях снова может подвергаться окислению. Окисленная форма не активна. В молодых органах сера находится главным образом в восстановленной форме (в органических веществах), а в старых – в оскисленной (виде сульфата). Потребность в сере сильно различается у разных сельскохозяйственных культур. Содержание серы в абсолютно сухом веществе растений обычно составляет от 0.1 до 1.0% (в расчете на элемент). Самая высокая потребность в сере характерна, как правило, для растений из рода Brassica (таких, как кочанная капуста, брокколи и рапс), затем следуют бобовые культуры и злаки.

40. Фосфор как элемент минерального питания растений. Физиологическая роль фосфора. МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей.Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор.2/3- минеральный фосфор; 1/3- в составе органических соединений. 2/3- нерастворимые в воде, недоступные для корней (AlPO 4 , FePO 4). Двузамещенные соли слаборастворимые; однозамещенные соли Са и Мg поглощаемые корнями.Источники Р- выветривание почвообразующей породы- аппатитыСа(РО 4) 2 *СаI 2 ; органика→ гумус→ минерализация→ нерастворимые соли.В кислой среде нерастворимые соли Р переходят в растворимые; НРО 4 3- →НРО 4 2- →НРО 4 - .Фосфор в ризосфере корней эксудаты подкисляют прилегающий слой почвы. Концентрация фосфора в растениях в 100 раз выше, чем в почве. Н 2 РО - , НРО 4 2- , РО 4 3- - анионы ортофосфорной кислоты. От корневого волоска до ксилемы- по симпласту. Неорганический фосфор по ксилеме транспортируется в виде Р н. В растениях не происходит редукция (восстановление) фосфора. Во всех органических соединениях фосфор находится в окисленной форме. Фосфор не меняет степени окисления в ходе превращения.Фосфор входит в состав НК, РНК, ДНК; фосфолипиды- основа клеточной мембраны. РО 4 обеспечивает гидрофильность фосфолипидов (биполярная часть молекулы) ; все фосфосодержащие продукты акцпторы СО 2 в темновых реакциях фотосинтеза; АТФ, ГДФ- роль энергетического обмена клетки- образующиеся эфирные пирофосфатные связи, которые обладают высокой свободной энергией гидролиза: глю-6-Р и АМФ- 14 кДж/моль; АДФ, АТФ- 30,5 кДж/моль; ФЕП- 62 кДж/моль; участие в регуляции различных реакций.При присоединению фосфата к белку меняется конфигураци белка и его свойства; ферменты-протеинкиназа, протеинфосфаза. Попеременное активирование светособирающих комплексов ФС1 и ФС2. Запасная форма фосфора- фитин- фосфорный эфир шестиатомного спирта инозита. Он запасается в семенах, как основной источник неорнанического фосфора.В семенах присутствует фитин в виде кальцево-магниевой соли инозитфосфатной кислоты- во время засухи фосфат высвобождается из инозита. При недостатке фосфора: синевато-пурпурная окраска листьев; мелкие узкие листья; торможение фотосинтеза, т. к. это проявляется в виде аномального круговорота кислорода, происходит обратный отток сахаров по ксилеме (сладкий сок); распадаются фосфорорганические соединения, торможение гликолиза и ЦТК→мало кетокислот (акцепторы амиака)→ тормозится редукция нитратов→ отравление растения нитратами, торможение синтеза АК и белков→ торможение роста.В целом, дефицит азота в большей мере тормозит рост растения, но дефицит фосфора в большей мере ослабляет процесс фотосинтеза 41. Физиологическая роль калия и кальция в растениях. Калий необходимый для жизни растений элемент. Его содержание составляет десятые доли процента, хотя в некоторых растениях (свекла, картофель табак, подсолнечник) - целые проценты. В растениях калий находится в основном в клеточном соке в виде минеральных солей (KCl, KHCO3, K2HPO4), a также в виде солей органических кислот.В золе находится максимальное количество калия. Концентрация в растении может в 1000 раз превышает концентрацию в почвах. В молодых тканях меристемы, камбии, побегах, почках. В клетке основная часть в вакуоли- основной катион клеточного сока; в цитоплазме адсорбируется на колоиды цитоплазмы. На свету связь калия с колоидами цитоплазмы прочная, в темноте- калий освобождается. Калий способствует гидратации колоида в цитоплазме- высокая водоудерживающая способность→ повышенная устойчивость к засухе и морозам. Калий регулирует устьичное движение; является активатором ферментативных систем; способствует включению фосфата в органические соединения; роль в сахаронакоплении; связь с азотным пианием (способ усвоения амония). Калий нужен на разных этапах в первые дни проростания, в формировании плодов, клбней.При недостатке калия на нижних листьях появляется краевой запал - края листовой пластинки отмирают, листья приобретают характерную куполообразную форму, на листьях появляются коричневые пятна. Образование коричневых пятен (некрозов) связано с нарушением азотного обмена и образованием в тканях трупного яда - путресцина.Кальций – один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са.Кальций поступает в растение в течение всей его жизни. Часть кальция находится в клеточном соке. Этот кальций не принимает активного участия в процессах обмена веществ, он главным образом обеспечивает нейтрализацию избыточно образующихся органических кислот. Часть кальция сосредоточена в плазме-кальций играет роль антагониста калия, он оказывает на коллоиды действие, противоположное калию, а именно - понижает гидрофильность плазменных коллоидов, повышает их вязкость. Для нормального хода жизненных процессов очень важно оптимальное соотношение калия и кальция в плазме, так как именно это соотношение обусловливает определенные коллоидные свойства плазмы. Кальций входит в состав ядерного вещества, а потому играет большую роль в процессах деления клетки. Велика роль кальция и в образовании клеточных оболочек, особенной формировании стенок корневых волосков, куда он входит в виде пектата. При отсутствии кальция в питательном растворе очень быстро поражаются точки роста надземные частей и корня, так как кальций не передвигается из старых частей растения к молодым. Корни ослизняются, рост их почти прекращается или идет ненормально. В искусственной культуре на водопроводной воде обычно симптомы недостатка кальция не проявляются.42. Физиологическая роль магния и железа в растениях. Магний (0,2%) Поглощается растениями в виде катиона Mg2+; магния много в молодых растущих частях растения, в генеративных органах и запасающих тканях растения. Магний входит в состав хлорофилла и непосредственно участвует в фотосинтезе. В хлорофилле содержится магния около 10 % от общего количества его в зеленых частях растений. С магнием также связано образование в листьях таких пигментов, как ксантофилл и каротин. Магний также входит в состав запасного вещества фитина, содержащегося в семенах растений и пектиновых веществ. Около 70 - 75 % магния в растениях находится в минеральной форме, в основном в виде ионов.Ионы магния, адсорбционно связаны с коллоидами клеток и наряду с другими катионами поддерживают ионное равновесие в плазме; подобно ионам калия, они способствуют уплотнению плазмы, уменьшению ее набухаемости, а также участвуют как катализаторы в ряде биохимических реакций, происходящих в растении. Магний активизирует деятельность многих ферментов, участвующих в образовании и превращении углеводов, белков, органических кислот, жиров; влияет на передвижение и превращение фосфорных соединений, плодообразование и качество семян; ускоряет созревание семян зерновых культур; способствует повышению качества урожая, содержания в растениях жира и углеводов, морозоустойчивости цитрусовых, плодовых и озимых культур.Наибольшее содержание магния в вегетативных органах растений отмечается в период цветения. После цветения в растении резко снижается количество хлорофилла, и происходит отток магния из листьев и стеблей в семена, где образуются фитин и фосфат магния. Следовательно, магний, подобно калию, может перемещаться в растении из одних органе в другие.Наибольшее количество его поглощают картофель, кормовая и сахарная свекла, табак, бобовые травы.Самой важной формой для питания растений является обменный магний, составляющий в зависимости от вида почвы 5 - 10 % общего содержания этого элемента в почве.Железо поглощается из раствора как в виде растворенных солей, так и в виде комплексных и органических соединений. Содержание его в растениях невелико, обычно оно составляет сотые доли процента.Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количествах более значительных, чем другие металлы. Оно входит в состав ферментов, участвующих в создании хлорофилла, хотя в него этот элемент не входит. Железо участвует в окислительно - восстановительных процессах, протекающих в растениях, так как оно способноменять степень окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтомусоединения железа являются переносчиками электронов в биохимических процессах. Воснове реакций, происходящих при дыхании растений лежит процесс переноса электронов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, содержащимижелезо.Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями. Листья становятся светло - желтыми. Железо не может, как калий и магний, передвигаться из старых тканей в молодые (т. е. повторно использоваться растением).Железное голодание чаще всего проявляется на карбонатных и сильноизвесткованных почвах. Особенно чувствительны к недостатку железа плодовые культуры и виноград. При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного образования органических веществ, из которых строится организм растения, и дефицита органических резервов, происходит общее расстройство обмена веществ. Поэтому при остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми, постепенно усыхают.

43. Физиологическая роль основных микроэлементов в растениях Микроэлементы, те питательные елементы содержание которых – менее 0,01 % .Основные микроэлементами растений являються: 1) Железо. Среднее содержание железа в растениях составляет 20–80 мг на 1 кг сухой массы. Ионы Fe3+ почвенного раствора восстанавливаются редокс-системами плазмалеммы клеток ризодермы до Fe2+ и в такой форме поступают в корень. Железо необходимо для функционирования основных редокс-систем фотосинтеза и дыхания, синтеза хлорофилла, восстановления нитратов и фиксации молекулярного азота клубеньковыми бактериями. При этом оно входит в состав нитратредуктазы и нитрогеназы. 2) Медь поступает в клетки в форме иона Сu2+. Среднее содержание меди в растениях 0,2 мг на кг сухой массы. Около 70 % всей меди, находящейся в листьях, сосредоточено в хлоропластах, и почти половина ее – в составе пластоцианина (переносчика электронов между фотосистемами II и I). Она входит в состав ферментов, катализирующих окисление аскорбиновой кислоты, дифенолов и гидроксилирование монофенолов (аскорбатоксидазы, полифенолоксидазы, ортодифенолоксидазы и тирозиназы). Два атома меди функционируют в цитохромоксидазном комплексе дыхательной цепи митохондрий. Медь входит в состав нитратредуктазного комплекса и влияет на синтез легоглобина. Влияя на содержание в растениях ингибиторов роста фенольной природы, медь повышает устойчивость растений к полеганию, повышает засухо-, морозо- и жароустойчивость. 3) Марганец поступает в клетки в форме ионов Mn2+. Среднее его содержание составляет 1 мг на 1 кг сухой массы. Марганец накапливается в листьях. Он необходим для фоторазложения воды с выделением кислорода и восстановления углекислого газа при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Два фермента цикла Кребса (малатдегидрогеназа и изоцитратдегидрогеназа) активируются ионами марганца. Он также необходим для функционирования нитратредуктазы при восстановлении нитратов. Марганец является кофактором РНКполимеразы и ауксиноксидазы, разрушающей фитогормон 3индолилуксусную кислоту 4) Молибден. Наибольшее содержание молибдена характерно для бобовых (0,5–20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2 мг на 1 кг сухой массы. Он поступает в растения в форме аниона МоО2-4, концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе он сосредоточен в основном в хлоропластах. Молибден входит в состав нитратредуктазы и нитрогеназы. Молибден необходим для биосинтеза легоглобина. Как металл-активатор молибден участвует в реакциях аминирования и переаминирования, для включения аминокислот в пептидную цепь, работы таких ферментов, как ксантиноксидаза и различные фосфатазы. 5)Цинк. Содержание цинка в надземных частях бобовых и злаковых растений составляет 15–60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая – в семенах. В растение цинк поступает в форме катиона Zn2+. Он необходим для функционирования ферментов гликолиза (гексокиназы, енолазы, триозофосфатдегидрогеназы, альдолазы), а также входит в состав алкогольдегидрогеназы. Цинк активирует карбоангидразу, катализирующую реакцию дегидратации гидрата оксида углерода: Н2СО3 → СО2 + Н2О-помогает использованию углекислого газа в процессе фотосинтеза. Цинк участвует в образовании триптофана. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. 6) Бор. Его среднее содержание составляет 0,1 мг на кг сухой массы. В боре наиболее нуждаются двудольные растения. Много бора в цветках. В клетках большая часть бора сосредоточена в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен. 44. Эмбриональный этап онтогенеза растений. Роль фитогормонов Эмбриональный этап онтогенеза семенных растений – развитие зародыша от зиготы до созревания семени включительно. Все процессы эмбриогенеза у высших растений осуществляется в семяпочке (семязачатке), которая(ый) формируется на плодолистике. Из зиготы образуется зародыш, из семяпочки – семя, из завязи – плод. Формирующийся зародыш питается гетеротрофно. Существенную роль в развитии зародыша играет формирующийся эндосперм. Из него в зародыш поступает специфический набор питательных веществ: аминокислоты и другие азотистые вещества, углеводы, инозит, витамины и др. Приток питательных веществ в развивающиеся семязачатки (семяпочки), а затем в созревающие семена и формирующиеся плоды определяется тем, что эти участки становятся доминирующими центрами. В них вырабатывается большое количество фитогормонов, прежде всего – ауксина, в результате чего аттрагирующее действие этих тканей возрастает. Накопление питательных веществ происходит в семенах. Запасные вещества могут откладываться и в семядолях, в этом случае эндосперм в зрелых семенах отсутствует (бобовые, пастушья сумка и др.). У некоторых видов (перец, свекла и др.) запасающая ткань формируется из нуцеллуса и в этом случае называется периспермом. Следовательно, питающие ткани как вне зародыша (эндосперм, перисперм), так и в самом зародыше (семядоли) синтезируют и запасают большое количество питательных высокополимерных веществ (белки, крахмал, запасные жиры). Они более компактны и инертны, чем мономеры, не создают значительного осмотического эффекта, что способствует уменьшению содержания воды в семенах Фитогормоны – это производные аминокислот (ИУК), нуклеотидов (цитокинины), полиизопренов (гиббереллины, АБК), непредельных углеводородов (этилен). Среди гормонов растений имеются лишь органические соединения с молекулярной массой от 28 (этилен) до 346 (гиббереллины) На этом этапеосновное влияние имеет ауксин (гормон роста) который помимо свое основной функции влияет на ситнез цитоплазмы, усиливает синтез РНК, белков, сахаров, и прочих необходимых веществ. 45. Ювенильный этап онтогенеза растений. Роль фитогормонов Ювенильный этап – этап молодости – включает прорастание семян или органов вегетативного размножения и характеризуется накоплением вегетативной массы. Растения в этот период, как правило, не способны к половому размножению. Этап можно разделить на две фазы: развитие проростка и накопление вегетативной массы. В течение первой фазы растение закрепляется на определенном экологическом участке среды обитания; во второй фазе создается вегетативная масса, достаточная для обеспечения трофическими факторами органов размножения и формирующихся семян и плодов, которые питаются гетеротрофно (у голосеменных питание может быть смешаным). Эта масса понадобится на следующем этапе развития. Растениям свойственны интенсивный метаболизм, быстрый рост и развитие вегетативных органов. Ткани и органы имеют относительно высокое содержание фитогормонов. Продолжительность этого периода у различных растений неодинакова: от нескольких недель до десятков лет. Особенности периода: проростки по многим параметрам не похожи на взрослые растения (форма листьев; апикальная меристема побегов развита слабее, характер роста побегов); отсутствие цветения, в чем проявляется роль компетенции; ювенильное растение не обладает компетенцией к факторам, вызывающим закладку органов полового размножения, что, возможно, связано с отсутствием в органах-мишенях белков-рецепторов гормонов, участвующих в индукции генеративного развития; сравнительно высокая способность к корнеобразованию; длительность периода сильно различается у разных таксонов и жизненных форм. Факторы, влияющие на ювенильность, у разных растений могут действовать по-разному. Главные из этих факторов: малая площадь листовой поверхности, что, вероятно, связано с недостаточностью углеводного питания; неблагоприятное соотношение молодых и старых листьев (удаление молодых листьев ускоряет образование цветка, старых – задерживает цветение; возможно, в молодых листья образуются ингибиторы цветения, идет конкуренция за ассимиляты); нечувствительность первых листьев к восприятию фотопериодического воздействия; тормозящее влияние корней на переход к зацветанию; нечувствительность меристем апексов побега к стимулам цветения. Ювенильным побегам характерно высокое содержание ауксина, образующегося в молодых листьях, и цитокининов, поступающих из корней. В ювенильных листьях могут присутствовать ингибиторы цветения. Ювенильное состояние зависит от определенных генов и поддерживается недостатком углеводного питания. Фитогормоны – это производные аминокислот (ИУК), нуклеотидов (цитокинины), полиизопренов (гиббереллины, АБК), непредельных углеводородов (этилен). Среди гормонов растений имеются лишь органические соединения с молекулярной массой от 28 (этилен) до 346 (гиббереллины). На этом этапе онтогенеза фигурируют такие фитогормоны:1) главный гормон роста (ауксин) синтезируется в апиксе побега и с верхушечной части передвигается по флоэме в корни стимулируя заложение боковых корешков; 2)цитокинин поднимаясь с ксилемным соком стимулирует синтез пазушных почек,после чего растение переходит к этапу зрелости

46.Индукция цветения:яровизация и фотопериодизм. Фоторецепция,роль фитохрома. Индукция цветения-влияние благоприятных фотопериодов на развитие растений, приводящее к последующему их зацветанию независимо от длины дня. Состоит из процессов,происходящих в листьях и приводящих к образованию гормонов цветения и изпроцессов, происходящих в стеблевых почках и приводящ к детерминации цветочных зачатков Яровизация - физиологическая реакция растений на охлаждение, вызванная адаптацией к сезонным изменениям умеренного климата. Для цветения и образования семян эти растения должны быть подвергнуты воздействию низких положительных температур (2-10 °C, в зависимости от вида и сорта растений). Яровизация присуща некоторым двулетним и многолетним растениям, в частности, злакам (рожь, пшеница и другим), корнеплодам (свёкла, морковь), а также плодовым деревьям (например, яблоням). В рамках современной экологической физиологии это явление описывается как холодовая реактивация диапаузы. Реакция на температурные и световые воздействия позволяет растениям адаптироваться к условиям их существования, используя наиболее благоприятный срокцветения и плодоношения. Переход растения к цветению и плодоношению имеет две фазы: индукцию и эвокацию. В фазе индукции растение реагирует на экологические факторы - температуру (яровизация) и длительность светового дня (фотопериодизм), а также на возраст растения (эндогенная регуляция). В фазе эвокации верхушечных меристемах происходят количественные и качественные биохимические изменения, приводящие к закладке и формированию цветков. Для прохождения яровизации семенам необходимы вода и кислород, поскольку проходящие изменения связаны с дыханием и нуждаются в большом количестве воды. Для яровизации также необходимы сахара и углеводы. Фотопериодизм - реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток. Под действием реакции фотопериодизма растения переходят от вегетативного роста к зацветанию. Эта особенность является проявлением адаптации растений к условиям существования, и позволяет им переходить к цветению и плодоношению в наиболее благоприятное время года. Помимо реакции на свет, известна также реакция на температурные воздействия - яровизация растений. За восприятие фотопериодических условий у растений отвечают особые рецепторы листьев (например, фитохром). Растения делят на длиннодневные, которые зацветают при непрерывной суточной освещенности более 12 часов, такие как рожь, морковь, лук. Короткодневные, которые зацветают при непрерывной суточной освещенности менее 12 часов, такие как хризантемы, георгины, астры, капуста. Есть и нейтральные, для цветения им необходимо 12 часов, например виноград, одуванчики, сирень.. В умеренных широтах короткие дни весной, а длинные - в середине лета. Поэтому короткодневные цветут весной и осенью, а длиннодневные - летомФоторецепция-все клетки способны реагировать на свет, но те из них, которые содержат пигмент, более чувствительны к действию света, Если искусственно ввести краситель в клетку, то также наблюдается повышение ее светочувствительности (фотодинамический эффект). Фитохром - фоторецептор, сине-зеленый пигмент, существующий в двух взаимопревращающихся формах. Одна поглощает красный свет (λ~660нм), другая - дальний красный (λ~730нм). Поглотив свет, фитохром переходит из одной формы в другую. Этот пигмент играет важную роль в ряде процессов, таких как цветение и прорастание семян.47.Флоральный морфогенез и гормональная теория цветения. Детерминация пола у растений. Сначала увеличивается конус нарастания, затем он превращается в цветковый (флоральный) бугорок. В его меристеме выделяют три зоны:1) периферическая;2) средняя (дистальная);3) центральная(проксимальная). Из периферической зоны формируются элементы околоцветника. У большинства двудольных растений первыми закладываются чашелистики или листочки околоцветника, затем – пыльники. Затем выделяется центральная часть, превращающаяся в пестик. Последними закладываются лепестки венчика. Каждый формирующийся орган цветка оказывает коррелятивное влияние на рост других частей. Затем заложенные органы начинают расти. Первыми растут чашелистики, защищающие органы цветка, потом тычиночные нити, пестик и лепестки. Постепенно лепестки приобретают окраску, соответствующую виду растения.В физиологическом смысле цветение – это комплекс процессов, протекающих от заложения цветка до оплодотворения.Основные этапы цветения: Компетенция;Инициация: индукция + эвокация;флоральный морфогенез.Компетенция – способность клетки, ткани, органа, организма воспринимать индуцирующее воздействие и специфически реагировать на него изменением развития.Инициация цветения – перехода от вегетативного к генеративному этапу развития представляет собой сложный многофазный процесс, включающий стадию индукции цветения и эвокации цветения. Некоторые авторы выделяют также этап транспорта флорального стимула как самостоятельную фазу. У многих растений способность к заложению цветков возникает только после действия пониженных температур и/или при определенном фотопериоде, или же по достижении растением определенного возраста.Индукция цветения – восприятие растением внешних (экзогенных) и/или внутренних (эндогенных) факторов (индукторов), создающее условия для закладки цветочных зачатков. Эта фаза осуществляется под действием экологических факторов – определённого фотопериода (фотопериодизм) и пониженных положительных температур (яровизация) – или эндогенных факторов, обусловленных возрастом растения (возрастная или автономная индукция).Эвокация цветения – процесс, в ходе которого в апикальной меристеме побега происходят необратимые изменения, направляющие дифференцировку ее клеток по генеративному пути развития цветочных зачатков. Этап флорального морфогенеза – включает рост и развитие органов цветка, формирующихся из цветочных зачатков. Детерминация пола -у растений чаще образуются обоеполые (гермафродитные) цветки, реже – однополые (мужские или женские). Какие цветки образуются на растении, зависит от генотипа, но факторы внешней среды также могут влиять на детерминацию пола у высших растений. Дифференцировка пола – сексуализация цветков – цепь взаимосвязанных процессов, каждый из которых может быть вызван одним или несколькими внешними или внутренними факторами. Длинный день, высокая интенсивность светового потока, красный свет стимулируют мужскую детерминацию пола. В системе, регулирующей процессы сексуализации цветков очень важна роль фитогормонов: цитокининов и гиббереллинов. ЦК, образующиеся в корнях, транспортируются в верхушки стеблей и индуцируют формирование в меристеме женских (пестичных) цветков. ГК, синтезируемые в листьях, транспортируясь в апикальные меристемы, вызывают образование мужских (тычиночных) цветков. 48.Физиология вегетативного размножения растений(клубни,луковици). Процесс вегетативного размножения имеет в основе стремление растения к восстановлению утраченных частей. При этом новые особи возникают без продуцирования семян или спор. Вегетативное размножение может происходить естественным путем или может быть вызвано искусственно растениеводом. У многих растений, размножающихся половым путём, существует возможность вегетативного размножения. Для этого части(цы) растительной ткани обрабатывают химическими препаратами (гормонами). Для размножения некоторых растений используют мерисистемные ткани, площадью всего лишь 1-2мм 2 . В любительских условиях большинство растениеводов используют черенки - части растения от нескольких квадратных сантиметров до одного дециметра, или длиной от 10см и более. При вегетативном размножении дочернее растение обладает тем же наследственным материалом, что и родительское. Такие растения называют клонами. Растения, которые появляются в результате вегетативного размножения, развиваются быстрее, чем растения, которые вырастают из семян. Следовательно, они могут быстрее расселяться, переходить к цветению и плодоношению.Вегетативное размножение позволяет сохранять свойства вида неизменными.Вегетативное размножение осуществляется укоренением частей побегов, листьев, почек, частей корневищ и корней. Также вегетативное размножение осуществляется видоизмененными корнями и побегами: клубнями, луковицами, усами. Размножение клубнями.Клубень стеблевого происхождения представляет собой сильно укороченный и утолщенный стебель (или часть его), несущий запасы питательных элементов и почки возобновления (глазки). Многолетние клубни - в основном органы запаса (хохлатка, цикламен), однолетние служат и органами размножения (картофель, хвощ полевой и др.). Стеблевые клубни следует отличать от корневых. Последние образуются в результате утолщения корней (например, у пиона, георгина), не имеют почек возобновления и без соответствующей части корневища для размножения непригодны. Размножение луковицами.Луковицы - подземный многолетний сильно укороченный побег, стебель которого превратился в так называемое донце. Листья утолщены и образуют чешую луковицы. В листьях откладываются питательные элементы. На вершине донца внутри луковицы находится почка. Весной она развивается в побег с цветком. На основании донца возникают придаточные корни. Помимо подземных встречаются надземные луковицы. Они образуются в пазухах листьев (лилия тигровая, бульбоносная), иногда в соцветиях (лук многоярусный). Луковицы сменяются ежегодно или накапливают чешуи в течение нескольких лет и становятся многолетними. В связи с этим различают луковичные растения с ежегодно сменяющимися (тюльпан) и многолетними луковицами (лилия, нарцисс, галантус, сцилла, гиацинт, мускари). Они размножаются образованием замещающих и боковых луковиц, которые развиваются из почек, расположенных в пазухах чешуи материнской луковицы.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»