Индукционные датчики конструкция. Что такое индуктивный датчик? Цветовая маркировка выводов

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, и другие датчики применяются очень широко.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) - понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет – сигнал на контроллер или рвёт . Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами .

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – .

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам .

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный . Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм . Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков , на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – . Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

что такое Датчик индуктивный? Индуктивные датчики широко используются для измерения положения и скорости, особенно в неблагоприятных условиях эксплуатации.Однако терминология и методы работы индуктивных датчиков могут вводить многих инженеров в заблуждение. В этой статье Марк Ховард из компании Zettlex объясняет принципы работы и описывает типы существующих датчиков, а также перечисляет их преимущества и недостатки.

Индуктивные датчики положения и скорости бывают самых разнообразных форм, размеров и конструкций. Можно сказать, что все индуктивные датчики работают по принципу работы трансформатора и физическое явление, основанное на переменных электрических токах. Это явление впервые наблюдал Майкл Фарадей в 1830-х годах, когда обнаружил, что первый токопроводящий проводник может «индуцировать» ток во втором проводнике. Открытия Фарадея позволили создать электродвигатели, динамометры и, конечно же, индуктивные датчики положения и скорости. В число таких датчиков входят простые бесконтактные реле, датчики переменной индуктивности и сопротивления, синхронизаторы, резольверы, ротационные датчики перемещения и линейно-регулируемые дифференциальные трансформаторы (RVDT и LVDT).

Различные типы индуктивных датчиков

В простом бесконтактном датчике (иногда называемом бесконтактным реле) при подключении устройства к источнику электропитания в его катушке (цепи, контуре или обмотке) протекает переменный ток. При приближении к катушке проводящего или магнитопроницаемого материала, например стального диска, импеданс катушки изменяется. Превышение порогового значения служит сигналом о наличии объекта. Бесконтактные датчики обычно используются для определения наличия металла, а их выходной сигнал часто используется для управления переключателем. Эти датчики широко используются во многих областях промышленности, где проблематично использовать электрические контакты обычных переключателей, например там, где много грязи или воды. Даже в обычной автомойке используется множество индуктивных бесконтактных датчиков.

Индуктивные датчики переменной индуктивности и сопротивления обычно генерируют электрический сигнал, пропорциональный смещению проводящего или магнитопроницаемого объекта (обычно стального стержня) относительно катушки. Как и в случае с бесконтактными датчиками, импеданс катушки изменяется пропорционально смещению объекта относительно катушки, в которой протекает переменный ток. Такие устройства обычно используются для измерения смещения поршней в цилиндрах, например в пневматических или гидравлических системах. Можно сделать так, чтобы поршень проходил по внешнему диаметру катушки.

Сельсины измеряют индуктивную связь между катушками, когда те движутся относительно друг друга. Сельсины, которые обычно вращаются, необходимо напрямую подключать как к движущейся, так и к неподвижной деталям (обычно называемым ротором и статором). Они обеспечивают чрезвычайно высокую точность измерений и используются в промышленной метрологии, радиолокационных антеннах и телескопах. Сельсины, как известно, сегодня дорогие и используются все реже, так как на смену им приходят (бесщеточные) резольверы. Последние представляют собой еще один вид индуктивных датчиков, но подключаются только к обмоткам статора.

LVDT, RVDT и резольверы измеряют изменение индуктивной связи между катушками, которые обычно называют первичной и вторичной обмотками. Первичная обмотка передает энергию во вторичные, но количество энергии в каждой из вторичных обмоток изменяется пропорционально относительному смещению магнитопроницаемого материала. В LVDT через отверстие обмоток обычно проходит металлический стержень. Как правило, ротор или полюсная деталь вращаются в RVDT или резольвере относительно обмоток, расположенных вокруг ротора. Обычно LVDT и RVDT используются в гидравлических сервоприводах элеронов аэрокосмических аппаратов, а также элементах управления двигателем и топливной системой. Резольверы, в свою очередь, применяются для коммутации бесщеточных электродвигателей.

Существенным преимуществом индуктивных датчиков является то, что связанные схемы обработки сигналов не нужно располагать в непосредственной близости от чувствительных катушек. Это позволяет размещать чувствительные катушки в неблагоприятных условиях эксплуатации, где другие методы измерения (например, магнитные или оптические) невозможны, поскольку для них относительно чувствительная кремниевая электроника должна находиться в точке измерения.

Применение

Индуктивные датчики известны своей надежностью при работе в сложных условиях. Следовательно, часто именно их сразу выбирают тогда, когда необходимо обеспечить безопасность или высокую надежность работы. Такие требования широко распространены в военной, аэрокосмической, железнодорожной и тяжелой промышленности.

Причина солидной репутации датчиков связана с фундаментальными законами физики и принципами работы, которые, как правило, не зависят от:

  • подвижных электрических контактов;
  • температуры;
  • влажности, воды и наличия конденсата;
  • посторонних предметов, например грязи, жира, твердых частиц и песка.

Преимущества и недостатки

Особенности конструкции основных элементов управления (катушек обмотки и металлических деталей) обеспечивают чрезвычайную надежность большинства индуктивных датчиков. Учитывая их солидную репутацию, возникает очевидный вопрос: «Почему индуктивные датчики не используются чаще?» Причина в том, что их физическая прочность является одновременно их преимуществом и недостатком. Индуктивные датчики отличаются точностью, надежностью и стабильностью, но при этом являются большими, громоздкими и тяжелыми. Большой расход материала и необходимость тщательной намотки катушек обуславливают дороговизну производства датчиков, особенно высокоточных приборов, требующий прецизионной намотки. Помимо простых бесконтактных датчиков, более сложные индуктивные датчики стоят слишком дорого для использования в широко распространенных коммерческих или промышленных сферах применения.

Другая причина их относительно редкого использования заключается в сложности составления инженерами-конструкторами технических условий. Это связано с тем, что схемы генерации переменного тока и обработки сигналов для каждого датчика необходимо рассчитывать и приобретать отдельно. Для этого обычно требуются глубокие навыки и знания в области аналоговой электроники. Поскольку молодые инженеры стремятся сосредоточиться на цифровой электронике, они рассматривают изучение таких дисциплин как приобретение ненужной квалификации, которую следует избегать.

Индуктивные датчики следующего поколения

Тем не менее, в последние годы на рынке появилось новое поколение индуктивных датчиков , которые пользуются все большей популярностью не только в традиционных сферах, но и в промышленном, автомобильном, медицинском, коммунальном, научном и нефтегазовом секторах. В этих индуктивных датчиках нового поколения используются те же фундаментальные законы физики, что и традиционных устройствах, но в них применяются печатные платы и современная цифровая электроника, а не громоздкие трансформаторные конструкции и аналоговая электроника. Такой элегантный подход также позволяет использовать эти технологии в 2D и 3D-датчиках, линейных устройствах с укороченным (< 1 мм) шагом перемещения, устройствах измерения криволинейной геометрии и высокопрецизионных энкодерах угла поворота.

Различные промышленные устройства предполагают использование всевозможных датчиков, которые отличаются своими особенностями и принципами работы. Одним из вариантов, получивших достаточно широкое распространение, является индуктивный датчик, который активно применяется в низовом оборудовании у различных систем, обеспечивающих автоматизированное управление линиями производства. Встретить такие датчики можно в устройствах, которые отвечают за работу линий пищевой и текстильной промышленности, предприятий машиностроения и многих других.

Что представляет собой датчик?

Этот датчик по своим особенностям работы относится к бесконтактному оборудованию, то есть, ему не требуется наличие физического контакта с объектом, чтобы определить его местоположение в пространстве. Индуктивный датчик обычно применяется в тех случаях, когда необходимо провести работу с металлическими объектами и предметами.

На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств - всевозможные автоматизированные линии и системы. У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами. У такой работы есть свои особенности и принципы, которые играют важную роль.

Как действует датчик?

Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

  1. При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
  2. Результат всех этих преобразований - получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
  3. Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.

Конструкция устройства

Индуктивный датчик положения имеет своеобразное устройство и состоит из нескольких важных узлов, которые обеспечивают полноценную работу этого агрегата.

  1. Важной деталью является генератор, именно он создает электромагнитное поле, которое помогает анализировать металлические предметы и определять их положение. Без этого поля работа была бы невозможной.
  2. Также в работе используется такой специальный элемент, как триггер Шмидта - в его задачу входит преобразование сигнала, чтобы датчики могли взаимодействовать с другими элементами в системе и передавать информацию дальше.
  3. Может использоваться усилитель - он нужен, чтобы получаемый сигнал достиг необходимого уровня для дальнейшей передачи.
  4. В работе датчика применяются индикаторы на светодиодах, они помогают контролировать работу устройства, сигнализируя о том, что оно включилось, а также лампочки могут загораться при выполнении различных настроек системы.
  5. Такое приспособление как компаунд защищает датчик от попадания внутрь воды и всяческих мелких частиц. Поскольку посторонние субстанции могут негативно сказаться на работе прибора и даже привести к его поломке, качественная защита является важным моментом.
  6. Корпус - в нем помещаются все перечисленные внутренние элементы, которые собираются в единое целое. Сам корпус монтируется в нужном месте при помощи специальных креплений, позволяющих расположить его так, как это требуется для правильной и эффективной работы на линии. Кроме того, оболочка защищает детали от механических воздействий и повреждений, которые могут быть получены таким путем. Для этого корпуса датчиков изготавливают из латуни, либо полиамида - они являются достаточно надежными материалами.

Что следует знать о работе датчика?

Индуктивный датчик положения - это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:

  1. Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
  2. Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
  3. Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
  4. Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.

Достоинства и недостатки

Как и различные другие приборы, эти обладают своими плюсами и минусами, которые становятся заметными в эксплуатации. Датчики стали довольно популярными благодаря тому, что у них есть несколько важных преимуществ.

  1. Конструкция этих агрегатов достаточно простая, она не содержит каких-то сложных элементов, требующих особой настройки. За счет этого датчики обладают высокой прочностью и надежностью, нечасто ломаются и могут постоянно использоваться на производстве. Также удобно, что у них не имеется скользящих контактов.
  2. Особенности устройства позволяют подключать приборы к промышленной системе напряжения без всяких проблем.
  3. Обладают хорошей чувствительностью, поэтому их можно использовать при работе с различными металлическими объектами.

К минусам можно отнести то, что при работе датчики могут выдавать погрешности из-за наличия различных факторов. На них может влиять температура, а также воздействие других полей похожего типа. Поэтому для качественной работы нужно обеспечить подходящие условия, которые не мешали бы датчикам правильно функционировать.

Индуктивные датчики применяются для преобразования в электрический сигнал небольших линейных и угловых перемещений. Простейший индуктивный датчик (называемый однотактным) представляет собой катушку индуктивности 1 с железным сердечником 2 и подвижным якорем З, отделенным от сердечника воздушным зазором (рис. 2-4). Катушка индуктивности с сердечником, называемая статором датчика, закрепляется неподвижно, а якорь соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовывать в электрический сигнал. При перемещении якоря изменяется сопротивление магнитной цепи датчика вследствие изменения воздушного зазора δ между статором и якорем (при вертикальном движении якоря) или площади воздушного зазора S (при горизонтальном движении якоря).

Сопротивление магнитной цепи датчика складывается из сопротивления участка цепи со сталью Rст и сопротивления участка цепи с воздушным зазором Rв. Магнитное сопротивление участка цепи со сталью:

Rст = Lст/(mст/Sст),

где Lст - суммарная длина средней магнитной силовой линии в стали сердечника и якоря; Sст - площадь поперечного сечения стального сердечника; mст - магнитная проницаемость материала сердечника и якоря.

Магнитное сопротивление участка цепи с воздушным зазором:

Rст = 2δ/(μоSв), где δ - длина воздушного зазора между статором и якорем датчика; μо - проницаемость воздуха; Sв - площадь поперечного сечения воздушного зазора. Так как μо>>μо, то Rст 0 . сопротивление магнитной цепи датчика будет определяться в основном сопротивлением участка цепи с воздушным зазором:

Rм ≈ Rв = 2δ/(;μоSr)

Переменный магнитный поток Ф, возникающий при подключении источника питания к катушке датчика, равен

где I - ТОК в цепи катушки датчика; w - число витков катушки датчика,w - число витков катушки датчика.

Индуктивность катушки датчика (если пренебречь потоком рассеяния):

L = ωФ/I = [ω 2 /2δ]μS

Формула (2-1) устанавливает функциональную связь между перемещением якоря индуктивного датчика (при перемещении изменяется или d, или Sв) и индуктивностью катушки датчика.

У индуктивных датчиков с изменяющимся воздушным зазором статическая характеристика L=f(x) нелинейная (рис. 2-5, 1) и при больших зазорах (δ > 1 мм) чувствительность датчика уменьшается. Такие датчики используют при ограниченном диапазоне перемещения якоря - до 1 мм, а начальная рабочая точка выбирается в области характеристики, где она имеет наибольшую крутизну и приближается к линейной чувствительность датчиков с изменяющимся воздушным зазором высокая – до 0,2 мкм.

У индуктивных датчиков с изменяющейся площадью воздушного зазора статическая характеристика L=f(Sв) линейная, диапазон перемещения якоря шире - до 8 мм, но чувствительность меньше - до 0,3 мкм (рис. 2-5, 2). Изменение индуктивности катушки датчика L приводит к изменению ее индуктивного сопротивления: ХL = ωL, где ω - круговая частота питающего напряжения. Следовательно, происходит и изменение полного сопротивления катушки: Z = √Rа*2+XL*2, где Ra - активное сопротивление катушки датчика.

Ток I, протекающий в катушке датчика под действием приложенного переменного напряжения U, также изменяется при перемещении якоря и может служить выходным сигналом датчика (выходной характеристикой). Условно принцип работы индуктивных датчиков можно представить в виде цепи преобразований происходящих при перемещении якоря датчика (для датчиков с изменяющимся воздушным зазором):

x → δ → Rm → Ф↓ → L↓ → Xl↓ → Z↓ → I

Однотактные индуктивные датчики имеют высокую чувствительность и надежность, практически неограниченный срок службы, большую мощность выходного сигнала (до нескольких ватт), что позволяет в ряде случаев не применять усилитель. К недостаткам индуктивных датчиков следует отнести нереверсивность характеристики, небольшой диапазон перемещений якоря, наличие тока холостого хода и электромагнитной силы притяжения между якорем и статором, влияние колебаний амплитуды и частоты напряжения питания. Эти недостатки полностью или частично отсутствуют у дифференциальных индуктивных датчиков.

Дифференциальный индуктивный датчик

Он содержит два статора с катушками индуктивности L1 и L2 и один общий якорь. При перемещении якоря индуктивность одной катушки увеличивается, другой - уменьшается. Катушки индуктивности включаются или в дифференциальную измерительную схему, или как смежные плечи в мостовую измерительную схему.

Дифференциальные индуктивные датчики по сравнению с однотактными имеют более высокую точность преобразования и чувствительность. Статическая характеристика этих датчиков линейная и реверсивная.

Трансформаторные датчики

Они являются разновидностью индуктивных датчиков. Трансформаторный датчик можно рассматривать как трансформатор, у которого коэффициент трансформации изменяется за счет изменения коэффициента взаимоиндуктивности М между его обмотками. Такие датчики применяются для преобразования в электрический сигнал (напряжение переменного тока) небольших линейных и угловых перемещений.

На рис. 2-6 представлен дифференциальный трансформаторный датчик с угловым перемещением якоря. Первичная обмотка датчика ω1 расположена на центральном стержне сердечника 1 и подключена к источнику переменного тока. Вторичные обмотки ω2а и ω2б расположены на крайних стержнях и соединяются последовательно и встречно. Ток, протекающий по ω1 создает переменный магнитный поток Ф1, разветвляющийся на два потока: Ф1а и Ф1б. При симметричном положении якоря 2 по отношению к статору датчика (сердечник 1 с обмотками ω1, ω2а и ω2б) магнитные потоки равны: Ф1а=Ф1б=Ф1/2, и ЭДС, индуцирующиеся во вторичных обмотках, будут также равны: Е2а=Е2б.



Так как фазы этих ЭДС противоположны (за счет встречного включения обмоток ω2а и ω2б), то напряжение на выходе датчика будет равно нулю: Uвых = Е2а - Е2б=О. При повороте якоря, который механически связан с подвижной частью объекта управления, изменяются площади поперечного сечения воздушных зазоров и между якорем и крайними стержнями сердечника. В результате этого изменятся сопротивления RM1 и RM2 магнитных цепей потоков Ф1а и Ф1б, да и сами потоки: один из них увеличивается на ΔФ, а другой уменьшится на ΔФ. Индуцирующие во вторичных обмотках ЭДС Е2а и Е2б также изменятся пропорционально изменению потоков ФIа и Ф2б. На выходе датчика появится напряжение Uвых, амплитуда которого равна разности амплитуд ЭДС Е2а и Е2б: Uвых = Е2а-Е2б, а фаза выходного напряжения будет определяться фазой большей из ЭДС.

Таким образом, характеристика такого датчика будет реверсивной и линейной (в рабочей зоне). Чувствительность дифференциального трансформаторного датчика в два раза выше, чем у однотактного, рабочая зона в два раза больше, и при симметричном положении якоря выходное напряжение равно нулю. Точность преобразования у дифференциальных трансформаторных датчиков выше, так как ввиду симметричности конструкции и схемы датчика частично взаимно компенсируются погрешности от изменения окружающей температуры и частоты источника питания.

Работа на производственных предприятиях требует частичной или полной автоматизации системы. Для этого используются различные приспособления, обеспечивающие бесперебойное функционирование. Приспособления из металла довольно часто контролируют индуктивные бесконтактные датчики, имеющие свои преимущества и недостатки. Они имеют небольшой размер и хорошо выполняют свою функцию при условии правильного подключения.

Общие сведения

Индукционный датчик представляет собой специальное приспособление, относящееся к бесконтактным. Это значит, что для определения местоположения объекта в пространстве ему не требуется непосредственный контакт с ним. Благодаря такой технологии, возможна автоматизация производственного процесса.

Как правило, приспособление применяется в различных линиях и системах на крупных заводах и фабриках. Его также можно использовать в качестве конечного выключателя. Прибор отличается высоким качеством и надежностью , работает даже в сложных условиях. Оказывает воздействие только на металлические предметы, поскольку другие материалы к нему нечувствительны.

Приспособление довольно устойчиво к агрессивным химическим веществам, широко применяется в машиностроительной, пищевой и текстильной промышленности. Аэрокосмическая, военная и железнодорожная отрасль также не обходится без этих датчиков.

Важность прибора делает его востребованным, поэтому множество компаний по всему миру выпускает различные модели со стандартным и расширенным набором функций, в разной ценовой категории.

Устройство прибора

Индуктивный датчик состоит из нескольких взаимосвязанных между собой узлов, которые и обеспечивают его бесперебойную работу. Основные детали приспособления следующие:

Все элементы расположены в корпусе, изготовленном из латуни или полиамида. Эти материалы считаются очень прочными для того, чтобы защитить сердцевину от отрицательного воздействия условий производства. Благодаря надежности конструкции, датчик способен выдержать значительную нагрузку и при этом корректно функционировать.

Принцип работы

Благодаря специальному генератору, выдающему особые колебания, осуществляется работа устройства. При попадании в поле его действия предмета, сделанного из металла, подается сигнал на блок управления.

Работа приспособления начинается после включения, которое даёт толчок к образованию магнитного поля. Это поле в свою очередь оказывает влияние на вихревые токи, меняющие амплитуду колебаний генератора, который первым реагирует на любые изменения.

Как только поступает сигнал, начинается обработка его в других узлах устройства. Сила этого сигнала во многом зависит от размера предмета, попавшего в поле действия приспособления, а также расстояния, на котором он находится. Следующим этапом будет преобразование аналогового сигнала в логический. Только так возможно точно определить его значение.


Особую роль играют такие датчики на производстве , где металлические детали должны идти по линии в определенном положении. Прибор может фиксировать его и при обнаружении любого, даже незначительного отклонения сигнализирует на главный пульт управления.

Как правило, чтение результатов функционирования устройства осуществляет специалист, выполняющий также роль контролера, наблюдающего за бесперебойной работой всей системы.

Основные определения

Для контроля работы устройства и чтения его сигналов существует несколько определений. Наиболее важными считаются следующие:

Благодаря этим определениям, возможно настроить приспособление для получения максимально точных данных, играющих важную роль в производственном процессе.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается температурная погрешность, связанная со значительным понижением или повышением температуры в производственном помещении. Инструкция к прибору предполагает его правильное функционирование при показателе +25 градусов. При отклонении значения в ту или иную сторону нарушается работа приспособления.

Одной из случайных погрешностей считается изменение показаний датчика вследствие воздействия на него электромагнитного поля других приборов. Для того чтобы избежать подобных ситуаций, на всех производствах установлен стандарт частоты электроустановок, составляющий 50 Гц. В этом случае риск возникновения погрешности из-за постороннего электромагнитного излучения снижается к минимуму. Исключить любые нарушения в работе устройства можно путем предварительной проработки деталей.

Способы подключения

В зависимости от типа устройства, отличаются и способы его подключения, поскольку определенные разновидности имеют разное количество проводов. Двухпроводные считаются наиболее простым, но и самым проблематичным вариантом. Включаются непосредственно в цепь токовой нагрузки. Для правильного проведения манипуляции необходимо номинальное сопротивление нагрузке. В случае его снижения или повышения приспособление начинает функционировать неправильно. Важным моментом будет подключение к сети, при котором необходимо соблюдать полярность.

Трехпроводные считаются наиболее популярными и простыми в подключении. Одни провода подсоединяются к нагрузке, а два других к источнику напряжения. Благодаря этому исключается вероятность реакции прибора на номинальное сопротивление в виде некорректной работы.

Существуют также датчики с четырьмя и пятью проводами. При их установке подключение двух проводов осуществляется к источнику напряжения, два - к нагрузке. Если присутствует пятый шнур, то есть возможность выбора подходящего режима работы.

Обычно провода обозначаются разными цветами с целью облегчения монтажа и последующего обслуживания датчика. Минус и плюс обозначены синим и красным цветом соответственно. Выход всегда маркируется черным цветом. Существуют устройства, в которых два выхода. Второй обычно белый и может служить также для входа. Эти нюансы указаны в инструкции по эксплуатации индуктивного датчика.

Корпус устройства может быть изготовлен из разного материала, иметь цилиндрическую, квадратную или прямоугольную форму. Наиболее распространенным считается первый вариант.

Правила выбора

Индукционный датчик считается важным элементом на многих предприятиях, поэтому к его выбору следует подойти очень ответственно. Рекомендуется соблюдать следующие правила:

Важный параметр - стоимость прибора. Зависит она чаще всего от фирмы-производителя и некоторых дополнительных функций, которые встроены в датчик. Однако существенной разницы в работе у устройств из разной ценовой категории не отмечается.

Популярные модели

Сегодня на рынке представлено множество моделей индуктивных датчиков. Наиболее востребованными считаются различные приборы от российской компании ТЕКО. Они отличаются хорошим качеством, отличными техническими характеристиками, простотой монтажа и эксплуатации. Главное достоинство устройств компании - демократичная цена.

Стоимость простых моделей начинается с 850 рублей, и за эти деньги прибор работает без нареканий. Выпускаются и более дорогие датчики с ценой от 2 до 5 тысяч рублей. Они обычно устанавливаются на крупных производствах, где необходима высокая точность и бесперебойная работа.

Индукционный датчик считается одним из лучших бесконтактных устройств, применяемых на различных заводах, фабриках и других предприятиях. Высокое качество и точность прибора делает его востребованным и необходимым.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»