Описание конденсаторов. Алюминиевые электролитические конденсаторы

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Конденсаторы постоянные – ёмкость не меняется (только по истечению срока службы). Слюдяные выпускаются с обкладками из фольги.

Керамические – пластинки, диски или трубки из керамики с нанесёнными на них электродами из металла. Для защиты покрываются эмалями, или заключаются в спецкорпуса, применяются в качестве контурных, разделительных, блокировочных и др.

Стеклянные – монолитные спечённые блоки из чередующихся слоёв стеклянной плёнки и Al фольги. Корпус изготавливается из такого же стекла.

Стеклокерамические – те же стеклянные, но диэлектрик – стекло с добавками из такого же стекла.

Стеклоэмалевые – диэлектриком служит стекловидная эмаль, а обкладками – слои серебра.

Металлобумажные – диэлектрик (лакированная конденсаторная бумага), обкладки – тонкие слои металла (меньше микрометра) нанесенные на бумагу с одной стороны. Корпус цилиндрический Al, концы герметизированы эпоксидной смалой (ВЧ пленочные).

Плёночные и металлоплёночные – диэлектрик (плёнка из пластмассы, полистирола, фторопласта и др.) и обкладка (металлическая фольга или тонкий слой метала, нанесенного на плёнку).

Электрические и оксидно– полупроводниковые: диэлектрик – оксидный слой на металле, являющийся одной из обкладок (анодом). Вторая обкладка (катод) – электролит или слой полупроводника, нанесенный непосредственно на оксидный слой. Аноды изготавливаются из Al, танталовый или ниобиевой фольги. Эти конденсаторы используются лишь в целях постоянного или пульсирующего тока, т.к. проводимость зависит от полярности приложенного напряжения.

Используются в основном в фильтрах выпрямительных устройств, в цепях звуковых частот, усилителях звуковых частот.

Герметичный слюдяной конденсатор в металлостеклянном корпусе типа <<СГМ>> для навесного монтажа.

По виду диэелектрика различают :

*конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме);

*конденсаторы с газообразным диэлектриком;

*конденсаторы с жидким диэлектриком;

*конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеколоплёночные) слюдяные , керамические, тонкослойные, из неорганических плёнок;

*конденсаторы с твёрдым органическим диэлектриком: бумажные , металлобумажные, плёночные, комбинированые – бумажноплёночные, тонкослоенные из органических синтетических плёнок ;

*электролитические и оксидно – полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металическом аноде. Вторая обкладка (катод ) это или электролит (в электролетических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсаторв, из алюминевой , танталовой фольги или спечёного порошка.

*твёрдотельные конденсаторы – вместо традиционного жидкого электролита используеться специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ – 50000 часов при температуре 85°С, слабо зависит от температуры. Не взрываются.

Современные конденсаторы, разрушаются без взрыва благодаря специальной разрывающейся конструкции верхней крышки. Разрушение возможно из–за нарушения режима эксплуатации или старения.

Конденсаторы с разорваной крышкой практически неработоспособны и требуют замены, а если она просто вздувшаяся, но ещё не разорвана, то, скорее всего, скоро он выйдит из строя или изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические ) функционируют только при корректной полярности напряжения из–за химических особеностей взаимодействия электролита с диэлектириком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из–за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов – довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения(актуально для импульсных устройств). В современных компютерах перегрев конденсаторов – также очень частая причина выхода их из строя, когда они стоят рядом с источниками повышеного тепловыделения (радиаторы охлождения).

Для уменьшения повреждений других и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы Х, К или Е на торце, иногда на больших конденсаторах она прикрыта пластиком).

При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа и иногда даже жидкости, и давление спадает без взрыва и осколков.

Старые электролитические конденсаторы выпускались в герметичном корпусе и не имели никаких защит от взрыва. Взрывная сила частей корпуса может быть достаточно большой и травмировать человека.

В отличие от электролитических, взрывоопасность оксиднополупроводниковых (танталовые) конденсаторов связана с тем, что такой конденсатор фактически представляет собой взрывчтую смесь: в качестве горючего служит тантал, а в качестве окислителя – двуокись марганца, и оба этих компонента в конструкции конденсатора перемешаны в виде тонкого порошка. При пробое конденсатора или при его случайной переплюсовке, выделившееся при протекании тока тепло иницирует реакцию между даными компонентами, протекающую в виде сильной вспышки с хлопком, что сопровождается разбрасыванием искр и осколков корпуса. Сила такого взрыва довольно велика, особенно у крупных конденсаторов, и способна повредить не только соседние радиоэлементы, но и плату. При тесном расположении нескольких конденсаторов возможен прожог корпусов соседних конденсаторов, что проводит к одновременному взрыву всей группы.

Кроме того, коденсаторы различаются по возможности изменениясвоей ёмкости :

*постоянные конденсаторы – основной класс конденсаторов не меняющие своей ёмкости (кроме как втечение срока службы);

* переменные конденсаторы – коденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением и температурой. Применяются, например, в радиоприёмниках для перестройки частоты резонансного контакта;

*подстроечные конденсаторы – конденсаторы, ёмкости которых изменяется при разовой переодической регулировки и не изменяются в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначания можно условно разделять конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общегоназначения используются практически в большенстве видов и классов аппаратур. Традиционно к ним относят наиболлее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все осталные кондесаторы являются специальными . К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические , пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходима способность работать с сигналами меняющейся полярности, хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшые габаритные размеры и низкая стоимость. Там же, где эти требования пересекаются, они практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов нишу устройств малой емкости.

Танталовые конденсаторы с покрытием диоксидом марганца (МnO 2). Танталовые конденсаторы имеют лучшие характеристики, чем алюминиевые, за счёт использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойсвеннo “высыхание” алюминиевых конденсаторов. Также они имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Термостабильность : в температурном диапазоне от – 55°С до +125°С ёмкость изменяется примерно на + 15% до –15%. Токи утечки у них примерно такие же, как у алюминиевых тех же номиналов. Недостатком танталовых конденсаторов является относительно большое уменьшение ёмкости с увеличением частоты и повышенная чувствительность к переплюсовке и перегрузкам по напряжению, из-за которой рекомендуется использование с двойным запасом по рабочему напряжению, также как для обеспечения устойчивой работоспособности при температурах более 85°С. Существует вероятность закорачивания при очень больших токах заряда при включении, сопровождаемого ярко – белой вспышкой и выделением дыма.

Танталовые конденсаторы с полимерным покрытием, предназначенные для поверхностного монтажа, сочетают в себе высокую ёмкость танталовых конденсаторов с высокой удельной проводимостью современных полимерных материалов.

Полимерные алюминиевые конденсаторы обладают хорошими характеристиками на частотах работы конвертера питания. Они имеют хорошие характеристики выброса напряжения и могут использоваться при документированном напряжении.

Как усовершенствование технологии тантала появились ниобиевыеконденсаторы . При сопоставимых условиях они имеют несколько больший ресурс. Например при температуре 85°С алюминиевые конденсаторы имеют ресурс от 8 до 25 тысяч часов работы, танталовые – 100 тысяч часов, а ниобиевые – от 200 до 500 тысяч часов (год непрерывной работы – примерно 8200 часов).На старых (80486, Pentium I) платах бывает изобилие ниобиевых конденсаторов, некоторые неполярные. Ниобиевые иногда оранжевые, иногда синие “капли”, но с выводами.

Электролитический конденсатор – это конденсатор, где диэлектриком служит слой оксида металла на аноде, а катодом – электролит. В результате достигается очень большая ёмкость при сравнительно высоком рабочем напряжении. Что и обусловливает высокую популярность этого рода изделий.

История происхождения электролитических конденсаторов

Эффект электрохимического оксидирования некоторых металлов был открыт французским учёным Eugène Adrien Ducretet в 1875 году на примере тантала, ниобия, цинка, марганца, титана, кадмия, сурьмы, висмута, алюминия и некоторых других материалов. Суть сводилась к тому, что при включении в качестве анода (положительный полюс источника питания) на поверхности нарастал слой оксида, обладающий вентильными свойствами. Фактически образуется некое подобие диода Шоттки, и в некоторых работах оксиду алюминия приписывается проводимость n-типа.

Это означает, что место контакта обладает выпрямляющими свойствами. Теперь можно легко предположить дальнейшее, если вспомнить о качествах барьера Шоттки. Это прежде всего низкое падение напряжения при включении в прямом направлении. Но что значит низкое? Применительно к конденсаторам это будет значительная величина. Что касается обратного включения электролитических конденсаторов, то многие наслышаны про опасность таких экспериментов. Дело в том, что барьер Шоттки имеет высокие токи утечки, за счёт которых слой оксида начинает немедленно деградировать. Но в данном случае немалая роль отведена ещё и туннельному пробою. Протекающая химическая реакция сопровождается выделением газов, за счёт чего и происходит негативный эффект. Теоретики говорят, что указанное явление также ведёт к выделению тепла.

Годом изобретения электролитического конденсатора называют 1896, когда 14 января Карол Поллак подал в патентное бюро Франкфурта свою заявку. Итак, на аноде электролитического конденсатора наращивается слой оксида под действием положительного потенциала. Этот процесс называется формовкой и в условиях современного развития техники длится часами и даже сутками. По этой же причине в процессе работы рост или деградация оксидного слоя незаметны. Электролитические конденсаторы применяются в электрических цепях с частотой до 30 кГц, что означает время смены направления тока в десятки мкс. За этот промежуток ничего не произойдёт с оксидной плёнкой.

Какое-то время в отечественной практике промышленный выпуск электролитических конденсаторов не был экономически выгодным. Вплоть до того, что в научных журналах рассматривалось, как именно можно наладить процесс производства. К подобным заметкам относится статья Миткевича (Журнал Русского физико-химического общества, физика №34 за 1902 год). Рассматриваемый электролитический конденсатор состоял из плоского алюминиевого анода и двух железных катодов, расположенных по бокам. Конструкция помещалась в 6-8% раствор пищевой соды. Формовка велась постоянным напряжением (см. ниже по тексту) 100 В до остаточного тока 100 мА.

Первые серьёзные наработки отечественной принадлежности по конденсаторам с жидким электролитом относятся к 1931 году и созданы лабораторией П. А. Остроумова.

Способность вентильных металлов с оксидной плёнкой выпрямлять ток неодинакова. Наиболее ярко эти качества выражены у тантала. По-видимому, силу того, что пентаоксид тантала обладает проводимостью p-типа. В результате чего смена полярности приводит к образованию диода Шоттки, включённого в прямом направлении. Благодаря специфическому подбору электролита деградирующий рабочий слой диэлектрика удаётся восстанавливать. Прямо в процессе работы. На этом исторический экскурс можно завершить.

Производство электролитических конденсаторов

Металлы, оксиды которых обладают выпрямляющими свойствами, называли вентильными по аналогии с полупроводниковыми диодами. Не сложно догадаться, что окисление должно приводить к образованию материала с проводимостью n-типа. Это и является основным условием существования вентильного металла. Из всех перечисленных выше ярко выраженными позитивными свойствами обладают лишь два:

  1. Алюминий.
  2. Тантал.


Первый применяется во много раз чаще, благодаря относительной дешевизне и распространённости в Земной коре. Тантал используют только в крайних случаях. Наращивание оксидной плёнки может происходить несколькими путями:

  • Одной из методик является поддержание постоянного тока. В процессе роста толщины окисла его сопротивление растёт. Следовательно, в цепь последовательно с конденсатором на время формовки следует включить реостат. Процесс контролируется по падению напряжения на переходе Шоттки и при необходимости шунт подстраивается так, чтобы параметры оставались постоянными. Скорость формовки при этом на начальном этапе постоянна, затем следует точка перегиба со снижением параметра, и через определённый интервал дальнейший рост оксидной плёнки идёт столь медленно, что технологический цикл можно считать на этом завершённым. При первом перегибе анод часто начинает искрить. Соответственно, и напряжение, при котором это происходит, называют тем же образом. На второй точке искрение резко усиливается, и дальнейший процесс формовки нецелесообразен. А второй перегиб называют максимальным напряжением.
  • Вторая методика формовки оксидного слоя сводится к поддержанию на аноде постоянного напряжения. В этом случае ток будет убывать с течением времени по экспоненте. Напряжение обычно выбирают ниже напряжения искрения. Процесс идёт до некоторого остаточного прямого тока, ниже которого уровень уже не опускается. На этом процесс формовки оканчивается.

Большую роль в процессе формовки играет правильный подбор электролита. В промышленности это сводится к изучению взаимодействия агрессивных сред с алюминием:



Для тантала и ниобия все электролиты подпадают под классификацию первой группы. Величина ёмкости конденсатора определяется преимущественно напряжением, при котором окончена формовка. Аналогичным образом используют многоатомные спирты, в том числе глицерин и этиленгликоль, и многие соли. Не все процессы идут строго по схеме, описанной выше. Так например, при формовке алюминия в растворе серной кислоты по методу постоянного тока, на графике выделяют следующие участки:

  1. Несколько секунд наблюдается достаточно быстрый рост напряжения.
  2. Затем с той же скоростью наблюдается спад до уровня порядка 70% от достигнутого пика.
  3. За третью стадию нарастает толстый пористый слой оксида, но напряжение растёт очень медленно.
  4. На четвёртом участке напряжение резко растёт до наступления искрового пробоя. На этом процесс формовки заканчивается.

Очень многое зависит от технологии. На толщину слоя, а следовательно, рабочее напряжение и долговечность конденсатора, влияют концентрация электролита, температура, некоторые другие параметры.


Конструкция электролитического конденсатора

Это конденсаторы с сухим электролитом. Их ключевое преимущество в хорошем использовании объёма. Лишний электролит практически отсутствует, что снижает вес и габариты при той же электрической ёмкости. Несмотря на характерное название электролит здесь не сухой, а скорее вязкий. Им пропитываются прокладки из ткани или бумаги, расположенные между обкладками. В силу вязкость электролита корпус может быть пластмассовым или даже бумажным, для герметизации используется уплотнение из смолы. В результате упрощается технологический цикл изготовления продукции. Исторически разновидности с сухим электролитом появились позже. В отечественной практике первые упоминания приходятся на 1934 год.

На торце зарубежных электролитических конденсаторов обычно нанесены крестом насечки, через которые внутренний объем выдавливается наружу. Это на случай аварии. Такой испорченный конденсатор легко заметить невооружённым глазом и своевременно заменить, что ускоряет значительно процесс ремонта. Избежать аварии и неправильной полярности включения помогает маркировка корпуса. Со стороны катода на импортных обычно проведена по всей высоте белая полоса с расставленными на ней минусами, а у отечественных с противоположной – крестики (плюсы).

Для увеличения излучательной способности цвет корпуса выполняется темным. Из этого правила имеются исключения, но они редки. Подобная мера увеличивает теплоотдачу в окружающую среду. При превышении напряжения на рабочим (формовочным) происходит резкое увеличение тока за счёт ионизации, наблюдается сильное искрение на аноде, частично пробивается слой диэлектрика. Последствия таких явлений легко устраняются в конструкции и с корпусом, используемым в качестве катода: конденсаторы с жидким электролитом занимают сравнительно много места, но хорошо отводят тепло. Зато отлично проявляются себя при работе на низких частотах. Что обусловливает специфику их применения в качестве фильтров блоков питания (50 Гц).

Эти цилиндрические электролитические конденсаторы устроены не так, как показано выше, и не имеют бумажные вкладок. В некоторых моделях корпус играет роль катода, тогда как анод находится внутри и может быть произвольной формы так, чтобы обеспечивалась максимальная номинальная ёмкость. За счёт механической обработки и химического травления, призванных увеличить площадь поверхности электрода, параметры удаётся поднять на порядок. Такая конструкция типична для моделей с жидким электролитом. Ёмкость у рассматриваемой конструкции варьируется при выпуске промышленностью от 5 до 20 мкФ при рабочем напряжении от 200 до 550 В. Из-за повышения сопротивления электролита с понижением температуры конденсаторы с жидким электролитом и корпусом в качестве катода применяются преимущественно в теплом микроклимате.

В практической деятельности каждый электрик сталкивается с работой адаптеров, блоков питания, преобразователей напряжения. Во всех этих приборах широко используются электрические конденсаторы, которые на сленге часто называют «электролитами».

Их основное преимущество состоит в относительно большой величине емкости при сравнительно малых габаритах. К тому же их производство давно налажено, а стоимость относительно невелика.

Принципы устройства

Любой конденсатор состоит из двух обкладок, пространство между которыми заполнено диэлектриком.

Формула, показанная на картинке, напоминает, что емкость С зависит от площади каждой обкладки S, расстояния между пластинами d и диэлектрической проницаемости среды внутри их ε. Величина ε0 — это электрическая постоянная, определяющая напряженность электрического поля внутри вакуума.

Электролитический конденсатор отличается от всех остальных тем, что использует слой электролита, заполняющий пространство между двумя обкладками, чаще всего выполненными фольгированными пластинами. Причем одна из них покрыта небольшим диэлектрическим слоем оксидной пленки.


Ленты из фольги складывают вместе, разделяя очень тонкой бумажной прокладкой, пропитанной электролитом. Ее величина около 1мкм позволяет значительно повысить емкость конденсатора. В приведенной выше формуле определения С толщина слоя диэлектрика d стоит в знаменателе.

Верхний слой фольги покрывают разделительной бумагой, а всю конструкцию сворачивают в рулон для помещения в цилиндрический корпус.


На концах фольги методами холодной сварки приваривают металлические пластины, обеспечивающие контакты для подключения к электрической схеме в качестве катода и анода. Причем положительный вывод образуется на пластине с оксидным слоем.

Роль катода выполняет электролит, который контактирует со всей поверхностью второй обкладки.

Поскольку емкость конденсатора зависит от площади пластин, то в технологию производства включен один из способов ее увеличения — это рифление поверхности со стороны электролита методами химического травления. Оно может выполняться за счет химической эрозии либо электрохимической коррозии.


Жидкие электролиты способны надежно затекать в созданные микроскопические углубления анода.

Оксидный слой на фольге создается во время электрического окисления. Этот процесс происходит при прохождении тока сквозь электролит. На картинке ниже показана вольт-амперная характеристика, демонстрирующая изменение токов внутри устройства при повышении напряжения.


Конденсатор нормально работает при номинальном напряжении и температуре. Если возникает перенапряжение, то возобновляется формирование слоя оксидов и начинает выделяться большое количество тепла, что ведет к газообразованию и повышению давления внутри герметичного корпуса.

Поэтому электролитические конденсаторы способны взрываться, что часто происходило со старыми конструкциями времен СССР, которые выполнялись единым корпусом без создания защиты от взрыва. Это свойство часто приводило к повреждению других, соседних элементов аппаратуры.

У современных моделей создается предохранительная мембрана, которая разрушается в начале газообразования и этим предотвращает взрыв. Ее изготавливают в виде насечек букв «Т», «Y» или знака «+».


Виды электролитических конденсаторов

По своей конструкции «электролиты» относятся к полярным устройствам, то есть, они должны работать при прохождении тока только в одну сторону. Поэтому их используют в цепях постоянного или пульсирующего напряжения с учетом направления прохождения электрических зарядов.

Для работы в цепях синусоидального тока созданы «неполярные электролиты». За счет дополнительных элементов в конструкции они при равной емкости обладают повышенными габаритами и, соответственно, стоимостью.

Электролитом между обкладками могут использоваться концентрированные растворы различных щелочей или кислот. По способу их наполнения конденсаторы подразделяют на:

    жидкостные;

  • оксидно-металлические;

    оксидно-полупроводниковые.


В качестве материала анода может быть выбрана фольга из алюминия, тантала, ниобия или спеченный порошок. У оксидно-полупроводниковых конденсаторов катодом служит слой полупроводника, нанесенный непосредственно на оксидный слой.

Особенности эксплуатации

Способность электролитов выделять газы при нагреве диктует необходимость при работе конденсатора для обеспечения надежности создавать запас по номинальному напряжению до 0,5÷0,6 его величины. Особенно это актуально для использования в устройствах с повышенными температурами.

У конденсаторов, предназначенных для эксплуатации в цепях переменного напряжения, оговаривается рабочая частота. Обычно это 50 герц. Для работы с более высокочастотными сигналами необходимо снижать рабочее напряжение. Иначе возникнет перегрев диэлектрика и поломка, разрыв корпуса.

Электролиты с большой емкостью и малыми токами утечек способны длительно сохранять накопленный заряд. В целях безопасности для ускорения их разряда подключают параллельно выводам резистор с сопротивлением в 1 Мом и мощностью 0,5 Вт.

Для использования в высоковольтных устройствах применяют конденсаторы, собранные последовательными цепочками. Чтобы выровнять напряжение между ними на выводы каждого параллельно подключают резисторы с номиналом от 0,2 до 1 Мом.

При необходимости использования полярных электролитических конденсаторов в цепях переменного напряжения собирают схему, в которой ток через каждый элемент проходит только в одну сторону. Для этого используют и токоограничивающий резистор.


Такие схемы раньше собирали для поворота фазы тока относительно напряжения при запуске мощных трехфазных асинхронных электродвигателей от однофазной сети. Сейчас этот вопрос уже теряет свою былую актуальность.

Отсутствие токоограничивающего резистора в такой цепочке приводит к перегреву диэлектрического слоя и выходу из строя электролитического конденсатора.

Жидкий электролит со времен высыхает через дефекты корпуса. За счет этого постепенно снижается емкость. Со временем она доходит до критического значения. Вышедший из рабочего состояния электролитический конденсатор чаще всего становится причиной поломки электротехнического прибора.

Неисправности конденсатора из-за нарушения эквивалентного сопротивления ESR

У электролитических конденсаторов есть еще одна техническая особенность, которая влияет на его характеристики при эксплуатации. Со временем работы у конденсатора постепенно снижается электрическая проводимость между обкладками и выводами за счет постоянно протекающих внутренних электротехнических процессов. Ее величину оценивают эквивалентным активным сопротивлением, которое обозначают индексом ESR. На русском языке называют ЭПС: эквивалентное последовательное сопротивление.

Конденсатор, обладающий повышенным ERS, ничем по внешнему виду не отличается от исправного. Просто его активное сопротивление увеличивается более одного Ома и может доходить до 10 Ом.

Способы определения

Промышленность выпускает приборы, позволяющие замерять эту величину на основе прототипа, изобретенного в России в 60-х годах. Они позволяют выполнять замеры без выпаивания конденсаторов из схемы, работают по принципу мостовых измерителей сопротивления для переменного тока.

Народные умельцы создают собственные упрощенные конструкции, позволяющие оценивать исправность конденсатора по этому параметру на основе определения активного сопротивления, превышающего 1 Ом. В качестве подобного индикатора можно собрать простой прибор, показанный на схеме.

Для его питания используется обычная пальчиковая батарейка. Светодиод своим свечением указывает пригодность электрического конденсатора по ERS-параметру за счет сравнения высокочастотных сигналов на тороидальном трансформаторе, приходящих от конденсатора и сформированного колебательного контура.

Изображение этой же схемы в несколько упрощенном виде показано ниже.


Испытуемый конденсатор подключают к обмотке, выполненной одним витком на трансформаторе из ферромагнитного сердечника с магнитной проницаемостью порядка 800÷1000. На этой обмотке напряжение не превышает 200 милливольт, поэтому можно оценивать характеристики электролита без выпаивания из платы.

Особой настройки такой индикатор не требует. Вполне достаточно проверить свечение светодиода на контрольном резисторе в один Ом и по нему ориентироваться в дальнейших замерах. Транзистор можно использовать любой, обладающий коллекторным током 100 мА и коэффициентом усиления больше 50.

Такой пробник будет неточно работать с конденсаторами, обладающими емкостью менее 100 мкФ.

Ионистор — суперконденсатор

Разновидностью конденсатора с электролитом, обеспечивающем протекание электрохимических процессов, является . Он использует эффект двойного электрического слоя, возникающего при соприкосновении материала обкладки с электролитом и объединяет функции конденсатора с химическим источником тока.

Его конструкция показана на картинке.


Здесь толщина образованного двойного слоя очень маленькая. Это позволяет значительно увеличивать емкость ионистора. Также у этих конденсаторов легче увеличить площадь контактируемой поверхности обкладок. Их делают из пористых материалов, например, активированного угля, вспененных металлов.

Емкость ионистора может достигать нескольких фарад при напряжении на обкладках до 10 вольт. Ее он набирает за короткое время и дальше надежно сохраняет. Поэтому эти модели используют для резервирования различных источников питания.

Условия эксплуатации сильно влияют на длительность работоспособного состояния ионистора. Если рабочая температура не превышает 40 градусов, а напряжение 60% номинального, то ресурс может составить более 40000 часов.

Стоит только увеличить его нагрев до 70 градусов, а напряжение — до 80%, как срок работы снижается до 500 часов. Ионисторы находят самое различное применение в быту. Они работают в комплектах солнечных батарей, автомобильной радиоаппаратуре, .

Южнокорейский автомобильный производитель Hyundai Motor Company работает над выпуском автобусов с электроприводом, питающемся от ионисторов. Их заряд планируется выполнять во время кратковременных остановок на маршруте передвижения.

По своей сути этот вид транспорта полностью заменяет троллейбус, у которого исключается из работы вся контактная проводная сеть.

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»