Сопротивление конденсатора постоянному току. Активное сопротивление, индуктивность и емкость в цепи переменного тока

Подписаться
Вступай в сообщество «page-electric.ru»!
ВКонтакте:

Ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.
Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

X C = 1 /(2πƒC)

где Xc — реактивное сопротивление конденсатора, f — частота, C — емкость.

Для расчета реактивного сопротивления конденсатора заполните предложенную форму:

Расчет ёмкости для реактивного сопротивления:

Расчёт ёмкости: C = 1 /(2πƒX C)

  • Похожие статьи
  • - Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно...
  • - Принципиальная электрическая схема цифрового широкодиапазонного измерителя емкости показана на рисунке. Принцип работы прибора – измерение длительности импульса автогенератора, в состав времязадающей цепи которого входит измеряемый конденсатор. Далее, формируется пачка импульсов образцовой частоты...
  • - Данная статья посвящена простому блоку со стабилизатором типа КРЕН. КРЕН это 3-х или 4-х выводные микросхемы, для примера взята 3-х выводная микросхема. Для стабилизированного напряжения (положительного) можно взять микросхему КРЕН5А, на +5В. Силовая часть (см. рис.1) примерно одинакова для...
  • - Габариты и масса высоковольтных трансформаторов из-за необходимости обеспечения электрической прочности становятся очень большими. Поэтому удобнее использовать в высоковольтных маломощных источниках питания умножители напряжения. Умножители напряжения создаются на базе схем выпрямления с емкостной...
  • - Приемник может быть перестроен в диапазоне 70...150 МГц без изменения номиналов подстроечных элементов. Реальная чувствительность приемника около 0,3 мкВ, напряжение питания 9 В. Следует заметить, что напряжение питания МС3362 - 2...7 В, а МС34119 2...12 В, поэтому МС3362 питается через...

Сопротивления в цепи переменного тока

Электрический ток в проводниках непрерывно связан с магнитным и электрическими полями. Элементы, характеризующие преобразование электромагнитной энергии в тепло, называются активными сопротивлениями (обозначаются R). Типичными представителями активных сопротивлений являются резисторы, лампы накаливания, электрические печи и т.д.

Индуктивное сопротивление. Формула индуктивного сопротивления.

Элементы, связанные с наличием только магнитного поля, называются индуктивностями. Индуктивностью обладают катушки , обмотки и . Формула индуктивного сопротивления:

где L — индуктивность.

Емкостное сопротивление. Формула емкостного сопротивления.

Элементы, связанные с наличием электрического поля, называются емкостями. Емкостью обладают конденсаторы, длинные линии электропередачи и т.д. Формула емкостного сопротивления:

где С — емкость.

Суммарное сопротивление. Формулы суммарного сопротивления.

Реальные потребители электрической энергии могут иметь и комплексное значение сопротивлений. При наличии активного R и индуктивного L сопротивлений значение суммарного сопротивления Z подсчитывается по формуле:

Аналогично ведется подсчет суммарного сопротивления Z для цепи активного R и емкостного C сопротивлений.

Конденсатор является одним из наиболее распространённых элементов электронных схем. Типы конденсаторов, некоторые их параметры, такие, как сопротивление конденсатора, рассмотрены в настоящей статье.

Можно сказать, что два металлических электрода, разделенных слоем воздуха, и есть конденсатор. Каждая из пластин имеет свой вывод и может быть подключена к электрической цепи. Такое устройство обладает определенными характеристиками, и одной из них является сопротивление конденсатора.

Конденсатор или, как его ещё называют, емкость, является очень любопытным устройством. Достаточно сказать, что он не пропускает Если посмотреть на прохождение постоянного тока с этой точки зрения, то сопротивление конденсатора является очень большим, практически бесконечным для постоянного тока.

В то же время в первый момент при подключении емкости к цепи постоянного тока происходит ее заряд. Внутри нее протекают сложные процессы. После того как емкость зарядится, протекание тока практически прекращается. Но здесь есть один нюанс, обусловленный качеством диэлектрика. Каким бы хорошим диэлектрик ни был, всё же через него протекает мизерный ток. Называется он током утечки.

Именно ток утечки служит показателем качества диэлектрика, используемого при изготовлении конденсаторов. Чем диэлектрик лучше, тем ток утечки меньше. Здесь можно рассмотреть одно обстоятельство: есть величина напряжения, до которой заряжена емкость, есть ток утечки, который протекает через этот заряженный элемент. Значит, по закону Ома можно рассчитать сопротивление конденсатора. Оно будет большим, токи утечки у современных емкостей составляют доли микроампер.

Немного по-другому выглядит картина, когда конденсатор находится под воздействием переменного тока. Ток свободно протекает через емкость. Объясняется это тем, что постоянно происходит процесс разрядки-зарядки конденсатора. А любой процесс протекания тока связан с его потерями из-за наличия сопротивления, в данном случае кроме активного сопротивления проводов присутствует емкостное сопротивление конденсатора, обусловленное именно процессами его зарядки и разрядки.

Электрические свойства готового изделия зависят от многих факторов. К ним относятся форма, геометрические размеры, тип диэлектрика. Существуют различные типы конденсаторов, в качестве диэлектрика в них используются вакуум, воздух, пластик, слюда, бумага, стекло, керамика, алюминий-электролит, тантал-электролит.

Два последних типа конденсаторов называют электролитическими, они обычно обладают повышенной емкостью. Другие конденсаторы называются по типу диэлектрика - бумажные, керамические, стеклянные. У каждого из них свои особенности, свое поведение при различных параметрах электрического тока, свои характеристики и применение.

Так, чаще всего применяются в цепях для фильтрации помех высокой частоты, электролитические - для фильтрации помех на низких частотах. А вместе, при параллельном соединении керамического и электролитического конденсаторов, получается самый распространенный фильтр, используемый практически во всех схемах. Во всех случаях емкость является фиксированной величиной, такой, как 0,15 мкФ.

Необходимо отметить наличие конденсаторов переменной емкости, в них емкость меняется в зависимости от положения регулирующей ручки. Достигается это изменением взаимного перекрытия пластин конденсатора. Как частный случай конденсаторов переменной емкости существуют так называемые подстроечные конденсаторы. В них емкость тоже может меняться - но в ограниченных пределах и только на этапе регулировки аппаратуры.

Номенклатура используемых конденсаторов просто огромна - как по типу диэлектрика, так и по конструктивному исполнению.

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф - это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями - до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.



Простейший конденсатор представляет собой два проводника электрического тока, например: - две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: - воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j - мнимая единица, ω - циклическая частота (рад/с ) протекающего синусоидального тока, f - частота в Гц , C - ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U - напряжение (разность потенциалов), до которого заряжен конденсатор.

Емкостное сопротивление это сопротивление переменному току, которое оказывает электрическая емкость. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока.

Проведем эксперимент, для этого нам понадобится. Конденсатор лампа накаливания и два источника напряжения один постоянного тока другой переменного. Для начала построим цепь, состоящую из источника постоянного напряжения, лампы и конденсатора все это включено последовательно.

Рисунок 1 — конденсатор в цепи постоянного тока

При включении тока лампа вспыхнет на короткое время, а потом погаснет. Так как для постоянного тока конденсатор имеет большое электрическое сопротивление. Оно и понятно ведь между обкладками конденсатора находится диэлектрик, через который постоянный ток не способен пройти. А вспыхнет лампа по тому, что в момент включения источника постоянного напряжения идет кратковременный импульс тока, заряжающий конденсатор. А раз ток идет значит и лампа светится.

Теперь в этой цепи заменим источник постоянного напряжения на генератор переменного. При включении такой цепи мы обнаружим, что лампа буде светится непрерывно. Происходит это по тому, что конденсатор в цепи переменного тока заряжается за четверть периода. Когда напряжение на нем достигнет амплитудного значения, напряжение на нем начинает уменьшаться, и он будет, разряжается следующие четверть периода. В следующие пол периода процесс повторится снова, но напряжение в этот раз уже будет отрицательным.

Таким образом, в цепи непрерывно течет ток хотя он и меняет при этом свое направление дважды за период. Но через диэлектрик конденсатора заряды не проходят. Как же это происходит.

Представим себе конденсатор, подключаемый к источнику постоянного напряжения. При включении, источник убирает электроны с одной обкладки, тем самым создавая на ней положительный заряд. А на второй обкладке добавляет электронов, создавая тем самым равный по величине, но противоположный по знаку отрицательный заряд. В момент перераспределения зарядов в цепи протекает ток заряда конденсатора. Хотя электроны при этом не движутся через диэлектрик конденсатора.

Рисунок 2 — заряд конденсатора

Если теперь из цепи исключить конденсатор, то лампа будет светить ярче. Это говорит о том, что емкость создает сопротивление, току ограничивая его величину. Происходит это из-за того что при заданной частоте тока значение ёмкости мало и она не успевает накопить достаточно энергии в виде зарядов на своих обкладках. И при разряде будет протекать ток меньше чем способен развить источник тока.

Отсюда следует, что емкостное сопротивление зависит как от частоты, так и от величины емкости конденсатора.

Формула 1 — емкостное сопротивление

← Вернуться

×
Вступай в сообщество «page-electric.ru»!
ВКонтакте:
Я уже подписан на сообщество «page-electric.ru»